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Executive Summary
Overview
In 2019, the Foreign, Commonwealth & Development Office (FCDO) commissioned Itad 
and Steward Redqueen to independently evaluate British International Investment’s 
(BII’s) infrastructure portfolio. The purpose of this evaluation is to better understand the 
development outcomes and impacts associated with BII’s investments in the infrastructure 
sector. The assignment consists of two phases, namely an evidence and portfolio-level review 
(Phase 1), published in 2022, and a subsequent series of in-depth case studies (Phase 2).

This in-depth study has two purposes. First, it aims to develop an evidence-based 
understanding of the impact generated as a result of new or improved access to electricity 
for communities connected to the Virunga Energies (VE) hydroelectric grid. This is to 
support the aims of the wider evaluation of the infrastructure portfolio, to understand 
where BII is generating most impact. Second, it aims to develop and test a cost-effective, 
replicable and scalable approach to evaluation using satellite data and machine learning 
techniques, which BII can use in ongoing or future investments. The study focuses on BII’s 
2016 investment in VE, which in 2017 began constructing a new hydroelectric minigrid 
and since then has been expanding access to electricity. The report outlines the study 
context, evaluation approach, methodology and lessons learned in the application of the 
geospatial impact evaluation approach. It also presents evidence of impact for two groups of 
settlements that have been connected to the new VE hydroelectric minigrid.

Study context
This study builds from Itad and Steward Redqueen’s ‘Phase 1 Evaluation Report’,1 which 
systematically reviewed evidence against BII’s sector impact framework for power, to identify 
areas in which BII can deepen its understanding of the impact of its investments. This study 
focuses on one particular area, which was identified as having a limited evidence base 
globally: understanding the impact of enhanced rural electrification for poorer and harder-to-
reach households. Extending the evidence base in this area is particularly relevant to BII, 
given that data compiled for the 2022 Phase 1 Evaluation Report revealed that power 
investments make up approximately 70% of BII’s investments in infrastructure. Of these 
investments, the majority (approximately 75%) are in independent power producers (IPPs), 
but a significant slice is in off-grid and minigrid solutions relevant to this study (approximately 
20%–25% of the non-IPP power portfolio).

The investment selected for study
This study focuses on BII’s investment in VE2 to develop mini hydro renewable electricity 
generation capacity and transmission and distribution infrastructure in Nord-Kivu province 
in the Democratic Republic of the Congo. The initial investment by BII in March 2016 was for 
mezzanine finance of up to $9 million to expand the existing grid and to construct two further 
generation assets.3

The Kivu region is one of the most densely populated areas in rural Africa and one of the 
most challenging operating environments in the world, because of decades of conflict and 

1 Final Report: Evaluating the Impact of British International Investment’s Infrastructure Portfolio
2 This is a multi-donor project, with additional investment by the European Union, the Howard G. Buffett Foundation, the  
      Schmidt Family Foundation, the United States Agency for International Development (USAID) and the World Bank.
3 Further information is available at: Virunga 

Figure 2. Illustration of treatment effect 
(not based on actual data)

https://assets.bii.co.uk/wp-content/uploads/2022/04/13095909/Evaluating-the-Impact-of-British-International-Investments-Infrastructure-Portfolio.pdf
https://www.bii.co.uk/en/our-impact/investment/virunga-investment-01/
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political instability. The region’s communities are severely afflicted by poverty, and the 
province of Nord-Kivu suffers from a chronic lack of electricity, with a 3% electrification rate, 
compared to 17% nationally. Local industry runs on expensive diesel or on charcoal that is 
made from trees illegally felled inside the park.

VE aims to open access to clean and reliable electricity for an additional 10,000–12,000 
households and small and medium-sized enterprises located in and around the Virunga 
National Park. This is expected to provide benefits for both households and business 
customers, including skills development and the creation of employment opportunities for 
at-risk youth, reduced greenhouse gas emissions from charcoal use, and improved health 
outcomes (as a result of subsidised electricity provision to local health centres).

Alongside its financial investment, BII has supported VE with dedicated technical assistance 
to strengthen its approach to environmental and social management and to reorient its 
business model away from grant funding towards a more sustainable, commercially oriented 
approach.

Study research questions
This study focuses on impacts for households connected to the minigrid as a result of BII’s 
investment. It aims to answer two key questions: (i) how have connections developed over 
time and what does this mean for access to electricity? (ii) have households experienced 
improvements to living standards as a result of connections to the minigrid?

Given the study design and available budget, the study does not cover anticipated investment 
impacts for businesses (including job creation), and is not able to cover additional project 
benefits, including lowered carbon emissions and improved health outcomes.

Study approach and concepts
The study set out to develop an innovative impact assessment approach which meets the 
typical challenges of evaluating the impact of infrastructure investments, including non-
randomisation, incomplete datasets and high cost. The solution developed in this study 
to address these challenges combines recent advancements in ‘synthetic control’ impact 
evaluation design with the latest developments in artificial intelligence (AI)-derived geospatial 
datasets. The synthetic control method (SCM) is particularly useful to measure impact where 
there is difficulty in identifying real-life counterfactuals (or control groups) ‘on the ground’ 
that share sufficient similarities with the treatment group (electrified households) but do not 
engage with the investment over time (i.e. do not become contaminated). It offers a robust 
mechanism to establish causal impact and to identify if and to what extent an investment has 
resulted in positive impacts in these circumstances.

The impact assessment approach has been designed in partnership with Atlas AI and uses 
Atlas AI’s geospatial data sources – in particular its proprietary Asset Wealth Index (AWI) – 
to capture impact. Atlas AI’s AWI builds on secondary data sources on asset wealth, drawn 
primarily from USAID’s Demographic and Health Surveys, which have been widely collected 
through household surveys for 30 years. These surveys collect data on household assets, 
including appliances, livestock, property and vehicles. Asset wealth is seen as a robust 
proxy for livelihood changes because it is based on multiple dimensions of wealth and, as 
a measure of longer-run economic well-being, is considered to be more straightforward to 
collect and more reliable than alternative measures such as spending.
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Historically, a key challenge in using these secondary datasets to measure the impact of 
particular investments is that they are not updated frequently enough, and there are often 
gaps in the data record, especially in conflict-affected countries. Atlas AI uses a proprietary 
AI model which combines secondary data on assets with other inputs (including daytime and 
nighttime satellite imagery at a resolution of 2km × 2km) to provide annual estimates of asset 
wealth across the globe. It is this data (available for the years 2012–21) that is used in this 
study to calculate impact from the VE investment.

This approach, which combines secondary data and satellite imagery with machine learning 
techniques to evaluate investment projects, is still in its infancy. This study therefore seeks to 
further ‘expand the envelope’ of methodological tools and data sources available to investors 
in this space. It is intended to offer a more detailed and credible understanding of impact 
than is possible either through self-reported data or through existing modelling techniques 
of the type typically used by development finance institutions (DFIs). It was designed from 
the outset to be replicable, scalable and cost-effective and therefore to offer an alternative 
to traditional impact assessment approaches, which are typically time-consuming and 
expensive to implement. Although this approach offers clear advantages to DFIs, it is still 
limited in a number of areas, such as the extent to which impacts can be disaggregated to the 
intra-household level, e.g. differentiating impacts within the household for men and women.

Implementing the study approach
The study approach was implemented through three key steps.

Step 1: Identification and mapping of geotagged data on new connections and 
infrastructure
VE provided the study team with data on the locations and timings of new connections 
and infrastructure, which was cleaned and mapped into Atlas AI’s database of human 
settlements. This enabled the study team to track where and when the investment was rolled 
out over time. The team were able to identify 25,856 new connections from 2017 in three 
principal settlement clusters. Thirty-one settlements in the Rutshuru Region were selected 
for inclusion from this dataset, based on their connection date (these are referred to as the 
‘treated’ settlements). These settlements were the earliest connected in 2017 and, given 
that AWI was available up to 2021, it was determined that they would meet the minimum 
threshold of four years’ ‘lag time’ to allow impacts to emerge.

Step 2: Identification and selection of non-treated locations
The study team identified and mapped all 9,423 ‘non-treated’ settlements in Nord-Kivu 
province. From this broad ‘candidate pool’ the team identified a shortlist (‘donor pool’) of 
161 settlements which shared significant similarities with the treated settlements across key 
attributes (AWI, population size and distance to major roads). This was done to speed up the 
downstream data analysis process. From this shortlist, ‘synthetic’ control units were created 
that mirrored closely the behaviour of the treated locations prior to the data of connection.

Step 3: Comparisons of asset wealth accumulation over time
To understand if, and to what extent, connection to the electricity grid has resulted in 
changes in living standards, the study team compared the asset wealth scores of the treated 
settlements to those of the synthetic control units for the years post-treatment (2017–21). 
This enabled the study team to isolate the ‘net’ effects of the investment.
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Key findings and recommended next steps
Findings and recommendations related to the impact of this investment:
The investment has been highly successful in reaching new customers. By accessing 
geotagged data on new connections and new electricity infrastructure, this study charts 
the roll-out of the rural electrification project to additional settlement clusters. In total, the 
minigrid achieved 25,856 new connections from 2017 to 2022 against an initial target (for the 
first phase of the investment) of 10,000–12,000.

There is strong evidence that the minigrid has improved access to electricity for 
underserved communities. Analysis of satellite nightlight data reveals that 18 out of 31 
settlements in the main settlement cluster being studied (Rutshuru) are very likely to have 
had access to electricity for the first time as a result of this investment. Analysis of the non-
treated settlements reveals that only 16 of 161 non-treated settlements had outperformed 
the treated ones between 2017 and 2021, suggesting that the results are highly unlikely to 
have occurred at random.4

Newly connected settlements have experienced an improvement in their standard of 
living as a result of connection to the minigrid. Analysis of asset wealth data reveals a 
net increase in asset wealth for households that have been connected to the electricity grid, 
with this impact being strongest among households who have accessed electricity for the 
first time. The identified rate of growth in the AWI for these latter households has doubled 
since connection, leading to a jump from the 79th to the 86th percentile for asset wealth (set 
against the distribution of all households in Nord-Kivu).

It is not possible at this stage to isolate the specific drivers of change that explain increasing 
AWI among connected households using the methodology developed for this study. However, 
reference to the way the Asset Wealth Index for the DRC is constructed from secondary data 
provides strong clues. The Index for the DRC captures a range of indicators which are likely 
influenced by new or improved electricity connections in the short, medium and longer 
terms. For instance, in the short term, the index captures the presence of attributes which 
will be impacted almost immediately as households shift to make use of a connection to the 
minigrid, including the presence of an electricity connection in the household, household 
ownership of a range of small appliances which rely on an electricity connection (including 
telephones, radios, televisions, fridges and sewing machines) and the type of energy used by 
the household for cooking (either an electric stove or other fuel).

Recommended next steps:

1. Based on the evidence collected through this study, BII should consider making
additional investments in minigrids or similar solutions, especially in underserved
rural areas. This study provides strong evidence that such solutions are effective in
improving access to electricity in rural areas and in driving changes in standards of
living, especially where these investments open access to electricity for populations
which currently have limited or no access to electricity.

2. Deepen the evidence base for this investment, including in additional treatment
locations, as impacts begin to emerge. This study makes use of data over a relatively
short time horizon to explore evidence of impact (2017–21). BII should consider
repeating this study in about five years, focusing in particular on the way impact has
developed as this investment is rolled out to new locations. This will increase confidence

4 This analysis suggests the results are significant at a 90% confidence interval.
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in the results and further strengthen learning on the situations in which this investment 
(and minigrids more broadly) has the greatest impact.

3.	 Identify opportunities to ground-truth findings for this investment and to 
understand the drivers of change at the household level. BII should seek 
opportunities to ground-truth the findings of this study by comparing these results to 
evidence collected through other methods, including primary data. This includes an 
ongoing study by the University of Antwerp, which is a larger-scale study using a more 
traditional difference-in-difference evaluation design to look more broadly at impact 
generated by the VE investment.

Findings and recommendations related to the evaluation approach:
This study demonstrates the successful development and use of a rapid, cost-effective, 
flexible and technically rigorous approach to measuring the impact of infrastructure 
investments. The use of a geospatial impact evaluation approach allied to the SCM offers 
a robust mechanism to establish causal impact and to identify if, and to what extent, an 
investment has resulted in positive livelihood impacts. It overcomes the typical challenges of 
establishing credible control groups, and it can be applied retrospectively in situations where 
baseline data is not available. The approach places little burden on investment owners, 
and it offers a new tool that BII can use to make robust estimates of impact without the 
requirement for time-consuming and typically more expensive on-the-ground surveys.

The approach can be used in situations where it is possible to draw a straight line 
between investees and end users of a service. The approach relies on the identification 
of end users (either individually or in groups). The approach is not appropriate in situations 
where it is not possible to make this identification, such as where investments provide 
a public good and/or have a systemic impact (for instance where an investment adds 
additional generation capacity to a national grid). The approach is, therefore, not relevant 
to all investments in the BII infrastructure portfolio, but it applies to a significant slice 
(approximately 25%).

Recommended next steps:
1.	 Continue to develop the approach presented in this study to be applicable to 

larger sections of the infrastructure portfolio. A useful next step is to expand 
on and test the approach in other subsectors in the infrastructure portfolio and in 
situations where information on customers is available only at a more aggregate 
level. The evaluation team is currently adapting and testing the approach in the 
telecommunications sector in this scenario.

2.	 Identify investments that could/should collect geotagged and time series data 
on connections. BII should consider identifying relevant investments in the portfolio 
which could feasibly collect geotagged connection data on end users and infrastructure 
installations, and should support investment owners to do this and report it through the 
BII monitoring and evaluation system.

3.	 Roll out further studies in the investment portfolio to deepen the evidence 
base for current and future investments. BII and FCDO should consider rolling out 
additional studies in the infrastructure portfolio for a subset of investments where 
feasible (in particular, where geotagged data on end users is available). Such a rolling 
programme would build up rigorous evidence of impact across the portfolio.
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1  Introduction
In 2019, the Foreign, Commonwealth & Development Office (FCDO) commissioned Itad 
and Steward Redqueen to independently evaluate British International Investment’s 
(BII’s) infrastructure portfolio. The purpose of this evaluation is to better understand the 
development outcomes and impacts associated with BII’s investments in the infrastructure 
sector. The assignment consists of two phases, namely an evidence and portfolio-level review 
(Phase 1), published in 2022, and a subsequent series of in-depth case studies (Phase 2).

This study has two purposes. First, it aims to develop an evidence-based understanding 
of the impact generated as a result of new or improved access to electricity through BII’s 
investment in Virunga Energies (VE). Second, it aims to develop and test a cost-effective, 
replicable and scalable approach to evaluation, using satellite data and machine learning 
techniques, which BII can use in ongoing or future investments. Itad and Steward Redqueen 
have been working together with Atlas AI to develop this approach. The report is structured 
as follows.

Section 2: The study context provides the background to the study and the link to the 
previous phase of our evaluation work, in which we systematically identified areas of BII’s 
infrastructure portfolio that could benefit from more in-depth evidence. This section also 
discusses what the study is trying to achieve, emphasising its strong learning focus, with the 
aims of helping BII understand where it is generating impact in its infrastructure portfolio 
as well as demonstrating a new cost-effective, flexible and replicable approach to impact 
evaluation. It provides an overview of the challenges associated with assessing impacts of 
infrastructure investments and the study design adopted for addressing these challenges.

Section 3: In the evaluation approach and concepts, we discuss how the study defines 
impact, focusing on household asset wealth and how this measure has been adapted to 
assess the impact of infrastructure investments on underserved rural communities for the 
purpose of this study.

Section 4: The methodology provides a step-by-step description of how the study was 
implemented in practice. This includes a discussion of the data accessed, the identification 
and selection process for settlements to include in the analysis, and how the geospatial 
impact evaluation approach with the synthetic control method (SCM) has been defined and 
used to isolate impact.

Section 5: In the key findings, we discuss the results of the study, focusing on: the 
development impact of the investment by applying the geospatial impact evaluation 
approach; how robustness of the results has been tested; how results compare to each other; 
and what we have learned about applying the approach in comparison to alternatives.

Part 6: The conclusions and ways forward section discusses the key takeaways from the 
study and proposes a set of recommendations and next steps for BII and FCDO, based on the 
study findings and learning from applying the new approach.
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2  Study context
This section outlines the overall purpose of the study and how it fits with the wider evaluation 
of the BII infrastructure portfolio. It also includes a discussion of the rationale for the focus 
on minigrid solutions and its strategic importance to BII. This is followed by an overview of 
the investment studied – BII’s 2016 investment in a hydroelectric minigrid owned by VE in the 
Democratic Republic of the Congo (DRC) – as well as the research questions the study aims to 
address.

2.1.    Purpose
This study has two primary aims:

	` First, it seeks to develop an evidence-based understanding of the impact generated 
as a result of BII’s investment in VE. This is linked to the wider goals of Itad and 
Steward Redqueen’s evaluation, which seeks to deepen BII’s evidence base on the 
impact it is generating through infrastructure investments (in this case focusing on 
the impact of minigrid solutions on households).

	` Second, it aims to develop a low-cost, flexible and scalable approach that can be 
replicated by BII to evaluate the impact of minigrids, using satellite data and machine 
learning techniques allied to recent thinking in the use of synthetic control analysis.

 
The study focuses on three areas of BII’s impact framework for the power sector: 
customers reached, improved access to electricity, and (ultimately) an improved standard 
of living. Phase 1 of the evaluation reviewed global evidence against the sector impact 
framework for power. In Figure 1, the evidence base presented in the Phase 1 Evaluation 
Report5  is illustrated against the BII impact framework for the power sector. Phase 1 found 
strong evidence linking minigrids to customers reached, which suggests that they contribute 
to increased access. However, there is currently limited evidence linking minigrids to 
improved standards of living; currently the main evidence related to this area links minigrids 
to improved incomes.6

This study therefore aims to deepen the evidence base around the three links highlighted 
in red in Figure 1, in particular building further evidence on the impact of minigrids on 
standards of living. As explained in Section 3, asset wealth is used as a proxy for improved 
living standards, as captured in the Asset Wealth Index (AWI) developed by Atlas AI. It also 
offers an opportunity to ‘extend the toolkit’ of impact assessment options available to BII, 
given that a lot of current evidence of impact across the portfolio is reliant on modelling 
techniques (using methodologies such as the Joint Impact Model)7 and on self-reporting by 
investees. This study goes further by assessing observational data of impact, but aims to do 
so in a way that is appropriate and feasible for BII to replicate.

5 Final Report Evaluating the Impact of British International Investment’s Infrastructure Portfolio
6 Cited by five previous studies, based on reduced energy/time costs: Calderón, C. and Servén, L., 2004; Dinkelman, T., 2011;  
      Groth, A., 2019; Gustavsson, M. and Ellegård, A., 2004; and Pueyo, A., Carreras, M., and Ngoo, G., 2020. Please refer to  
      Annex 1: References.
7 Comparability, accountability, transparency

https://assets.publishing.service.gov.uk/media/623b3cb98fa8f540f6c2322c/BII_Infrastructure_-_Formal_Evaluation_Report_-_Final_Report_230322.pdf
https://www.jointimpactmodel.org/
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Figure 1. BII impact framework for the power sector, highlighting strength of evidence from Phase 1

 
Because of time, budget and data limitations, this study is not able to cover other aspects 
of the sector framework. Additional impact pathways and outcomes are being covered by 
other studies in Phase 2 of this evaluation. For instance, the impact that additional power 
capacity has for businesses in terms of improved productivity, affordability and reliability 
across various countries in Africa is being assessed as part of a separate study. It should also 
be noted that the VE project aims to have additional impacts, which are beyond the scope of 
this study, including climate mitigation (by reducing greenhouse gas (GHG) emissions from 
charcoal use), improved health outcomes (as a result of subsidised electricity provision to 
local health centres), and improved access to electricity for local businesses.

2.2.    Strategic importance and relevance to BII
This study is being undertaken as part of Itad’s wider evaluation of the BII 
infrastructure portfolio and follows the Phase 1 evaluation, conducted by Itad and 
Steward Redqueen, which reviewed BII’s infrastructure portfolio. The Phase 1 evaluation 
identified a longlist of 13 ‘evidence opportunities’ where the existing evidence of impact in 
the infrastructure sector was weakest and where it was feasible that BII could deepen its 
evidence base. One of the opportunities identified is in the area of minigrids, which forms the 
basis of this study.

Extending the evidence base on the impact of minigrid solutions is of strategic 
importance, given the urgent need for new investments to increase access to 
electricity. Although nearly 600 million people in sub-Saharan Africa (SSA) lack access to 
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modern electricity,8  the amount invested annually is only a fraction of that required to ensure 
continent-wide access in the next 20 years.9  At the same time, as the Phase 1 Portfolio Review 
and a comparison with global literature revealed, the evidence base on the impact of access 
to electricity in SSA is mixed. Studies note a general lack of consistent evidence, especially 
around increased access and improved standards of living for households.

Extending the evidence base on impact for minigrids is relevant to BII, given that data 
compiled for the 2022 Portfolio Review revealed that power investments make up by far 
the largest slice (approximately 70%) of BII’s investments in infrastructure.10 Of these, the 
significant majority are in independent power producer (IPP)-type investments. However, 
investments in home solar, off-grid and minigrid solutions (which all share similarities) 
contribute prominently to the remainder of the power portfolio and are particularly 
important in extending impacts to underserved rural communities. This study is being 
implemented alongside others that target other prominent aspects of the power and non-
power infrastructure portfolio.

2.3.    Background on Virunga Energies
The investment selected for study is BII’s investment in VE to develop mini hydro 
renewable electricity generation capacity and transmission and distribution (T&D) 
infrastructure in the Nord-Kivu province in the DRC. The initial investment by BII in March 
2016 was for mezzanine finance of up to $9 million to expand the existing grid and to 
construct two further generation assets, resulting in almost 30 megawatts (MW) of new 
generation capacity.11 Through this funding, the project aimed to offer reliable and affordable 
power to an additional 10,000–12,000 households and small and medium-sized enterprises 
(SMEs) as well as poorer rural households who have an average consumption below $1.90/
person/day.12 13 Instalment of electricity infrastructure began in 2017; this study focuses on 
the period 2017–21 as settlements were becoming connected to the new minigrid.

The investment was approved and implemented before the development of the BII 2022–26 
technical strategy. However, it has relevance for all three strategic objectives in the current 
strategy to support productive, sustainable and inclusive development: (i) by improving 
access to affordable and reliable power, it is expected to boost investment and productivity 
for the region’s businesses; (ii) by reducing reliance on fossil fuels for heat, light and 
electricity generation, it aims to reduce GHG emissions; and (iii) by focusing on energy access 
in a poorer rural region of the DRC, it aims to enhance inclusive development by positively 
impacting a low-income population.14 Given its design and data availability, this study is 
primarily relevant to the third of these impact dimensions.

The VE project operates in Nord-Kivu province in the East of DRC. The province is large 
(covering an area of around 60,000 km2) and is home to 6.6 million people. It is very poor 
(3.2 million of its residents live in extreme poverty)15 and is largely rural, with an urbanisation 
rate of 36% (this figure is skewed by the presence of Goma, the region’s largest city, which 
has a population of approximately 1.5 million). By the standards of the DRC, the province’s 

8  IEA. World Energy Outlook, 2019.
9  IEA. World Energy Outlook, 2019.
10   Final Report: Evaluating the Impact of British International Investment’s Infrastructure Portfolio
11   This is a multi-donor project, with additional investment by the European Union, the Howard G. Buffett Foundation, the  
       Schmidt Family Foundation, the United States Agency for International Development (USAID) and the World Bank.
12   Further information is available at Virunga
13   BII provided additional mezzanine financing of $10 million to VE in 2021 to expand its network into the city of Goma,  
       connecting over 19,000 customers.
14   The project is aligned to BII’s commitments under the Paris Agreement and qualifies as 100% climate (mitigation) finance.
15   World Bank, 2021, North Kivu InfraSAP Report

https://www.bii.co.uk/en/our-impact/search-results/?inv-name=virunga
https://documents1.worldbank.org/curated/en/914151624339016054/pdf/Congo-Democratic-Republic-of-North-Kivu-InfraSAP-Main-Report.pdf
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population has low asset ownership, with 21.7% of households in the province having a 
television (ranking 9th out of 11 regions in the DRC), 3.69% households having a refrigerator 
(ranking 8/11), and 10.3% having a motorbike (ranking 8/11).16

The province has poor provision of basic infrastructure, which constrains growth. The 
Kivu region has a very low electrification rate (only 3% electrification rate vs 15% in the DRC 
overall), and in many of the rural areas in which VE operates there was effectively a zero 
electrification rate before the project started. Industry and households in the region, if they 
have access to an energy source, typically rely on diesel generators or on charcoal made 
from trees illegally felled inside the park (providing a major source of income for armed 
groups). Nevertheless, despite these layered constraints and challenges, North Kivu shows 
signs of a dynamic private sector and considerable growth potential, with the province rich in 
agricultural and mineral resources such as tin, gold and coltan.

The installation of the new minigrid by VE is a significant development in the province 
and holds the potential to open access to clean and reliable energy to many for the 
first time and to provide significant social and environmental benefits. VE specifically aims 
to increase rates of rural electrification in harder-to-reach locations; in line with this ambition, 
VE initially focused on supplying rural locations in the province closer to the Virunga National 
Park and resisted pressure to expand the minigrid to the nearby large conurbation of Goma. 
Over time, VE has reached agreements to supply electricity to a discrete set of businesses 
and expand the minigrid to the city. This has the benefit of enhancing the commercial viability 
of the project. In spite of these changes to its approach, VE continues to focus on supplying 
electricity to poorer, rural locations and providing subsidised access to electricity for public 
lighting and to public health centres.

The investment in VE is feasible to study due to the availability of geotagged data. VE collects 
anonymised data on electricity infrastructure and clients, enabling the geolocation of end 
users of new infrastructure investments and tracking of their socioeconomic outcomes 
over time. This is typically the case with off-grid, minigrid and home solar power solutions, 
where investees can identify customers and collect geotagged data on them. In contrast, 
‘systemic’ investments in additional national grid generation capacity do not allow investees 
to identify individual customers.

BII has played a pivotal role in supporting VE to establish itself as a financially 
sustainable company which aims to improve access to electricity and to contribute to 
socioeconomic development through a commercial model of electricity generation (rather 
than relying on grant funding). BII structured the 2016 investment with this aim in mind 
and to be appropriate to VE’s situation. Recognising challenges in offering equity to VE as 
an early-stage investee, BII structured the deal as senior corporate debt with equity-like 
characteristics (including a seat on the Board and an upside sharing mechanism). VE had 
tried, but failed, to attract institutional investors or commercial debt financing in the past; 
the only other funders working with VE at the time were development actors providing grant 
finance and Congolese banks offering (expensive) overdraft financing. BII also recognised 
that there would be challenges with regard to how quickly VE could absorb the new capital; 
BII therefore decided to increase funding incrementally over time, linked to VE proving the 
business model and making changes to business processes.

Alongside its investment, BII provided VE with non-financial forms of support. In terms of 
its business model, BII provided advice in prioritising particular customer types, with a view 
to supporting VE to become financially sustainable as quickly as possible. BII also provided 

16 Global Data Lab 2018: GDL Area Profile Report

https://globaldatalab.org/areadata/profiles/CODr106/
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support to VE to improve business integrity, including risk management, and worked with VE 
to audit its risk management capacity and develop an Action Plan to close identified gaps.

BII has since provided a further round of funding, and additional investment has been 
provided by the European Union, the Howard G. Buffett Foundation, the Schmidt Family 
Foundation, the United States Agency for International Development (USAID) and the World 
Bank.

This study aims to answer the following research questions, related to new 
connections and changes in standards of living as a result of this investment:

	` Understanding how power infrastructure and connections have developed over time:

	` How have minigrid power generation and T&D infrastructure developed geographically 
over time following investment by VE and BII?

	` How, to what extent, and where have VE and BII’s investments in minigrid power 
generation and T&D increased connections and customers reached?

	` What is the socioeconomic profile of the communities that have been reached by new 
connections? (This profile will include data points such as AWI, population density and 
gender profile.)

 
Understanding the impact of these investments:

	` How have communities connected to the minigrid developed over time?

	` Is there evidence – which can be attributed to the investment – that connected 
communities have demonstrated increased growth rates (of community average 
household wealth) relative to non-connected communities?

	` How have these growth rates developed over time?

 
Other potential outcomes and impacts of this investment, such as changes in electricity 
pricing, improvements in reliability or reductions in GHG emissions, cannot be assessed using   
the selected approach and are beyond the scope of this study.
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3   Evaluation approach and concepts
This section highlights the research challenges typically associated with evaluating 
infrastructure projects (time, cost and methodology) and describes the research solution, 
which takes recent advances in synthetic control impact evaluation design and combines 
these with artificial intelligence (AI)-derived geospatial data to develop a low-cost and 
scalable geospatial impact assessment approach which BII can use in future studies. This 
section also discusses how the study defines impact, focusing on household asset wealth 
and how and why this measure has been adopted for the purposes of this study, as well as 
the approach to utilising Atlas AI’s AWI as a proxy for livelihood improvements. Finally, this 
section outlines some of the limitations of the study.

3.1.    The research challenges
Evaluating infrastructure impacts is difficult and typically expensive and time-
consuming. This study has been designed to offer a lower-cost, more flexible approach 
to meet these challenges. Challenges in evaluating infrastructure projects include: non-
randomisation; controlling for differences between control and treatment groups; incomplete 
datasets; and the high costs associated with evaluating infrastructure impacts. First, new 
infrastructure is not randomised in delivery, which requires the identification of an adequate 
counterfactual, which can be resource-intensive and can be difficult to achieve when dealing 
with large and diverse treatment areas. Second, recipients of infrastructure may have 
differences from surrounding untargeted populations (such as higher underlying rates of 
economic growth), which complicates the use of more traditional evaluation designs (such as 
difference-in-difference). Third, national surveys of living standards typically do not revisit the 
same households or locations across survey waves, or they are repeated infrequently, making 
it difficult to construct repeated local-level measurements using secondary datasets. This is 
true of the available datasets for Eastern DRC. Lastly, traditional impact evaluation designs 
that seek to close gaps in existing datasets through ‘on-the-ground’ surveys are typically 
time-consuming and expensive to administer. This is particularly true for Eastern DRC, where 
challenges in access further complicate and increase the cost of large-scale survey work.

3.2.   The study approach
The approach developed through this study to address the challenge of evaluating 
power investments is to combine recent advancement in synthetic control impact 
evaluation design with the latest developments in AI-derived geospatial datasets. 
The SCM is a particularly useful approach to measure impact where it is difficult to identify 
real-life, on-the-ground counterfactuals (or real-life control groups) that share sufficient 
similarities with the treatment group and which are not impacted by the project over time (i.e. 
become ‘contaminated’). Both challenges are present in the case of electrification projects. 
The SCM differs from ‘traditional’ (difference-in-difference) impact evaluation approaches 
in that it does not attempt to identify ‘real-life’ control units on the ground and track 
their progress over time; rather, it is based on a series of simulated control units that are 
developed to best mimic the behaviour of the treated units in the years pre-treatment.17

The synthetic controls act as the (unobservable) counterfactual of what would have 
happened without the intervention. They have typically been used to date in the evaluation of 
large policy decisions that affect large treatment units (such as the impact of the introduction 
of the California Tobacco Control Program).18 They have not yet been used as frequently in 

17   These are developed as the weighted average of non-treated units across a series of predetermined metrics.
18 Abadie, A., Diamond, A. and Hainmueller, J. (2010) ‘Synthetic Control Methods for Comparative Case Studies: Estimating  
        the Effect of California’s Tobacco Control Program’. Journal of the American Statistical Association 105(490): 493–505.
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other areas, such as the evaluation of infrastructure projects. In this case, the approach has 
been tailored to be more relevant to the identification of impact in multiple treatment units in 
a more localised investment. Because they are simulated, a further advantage of the method 
is that they can be ‘tailored’ to the purposes of the study.19

In this study, synthetic control analysis 
is used to isolate the net impact (as 
captured by settlements’ changing 
asset wealth) of connection to the newly 
constructed hydroelectric minigrid. The 
process to implement the synthetic 
control analysis approach is described in 
detail in Section 4. As illustrated in Figure 
2, synthetic control units are developed 
to closely match the behaviour of 
settlements that have been connected 
to the minigrid over time (our ‘treatment’ 
settlements) in the period before they 
were connected (the time of treatment). 
We then use statistical analysis to identify 
differences in the behaviour of the 
treated units and synthetic control units 
in the period after the time of treatment. 
This is the ‘treatment effect’ of the 
intervention.

The data used in the geospatial impact evaluation design is fed through a machine 
learning model developed by Atlas AI to make predictions on asset wealth across 
the Earth’s surface. Atlas AI’s large-scale proprietary datasets make use of daytime and 
nighttime satellite imagery, in combination with publicly available data and machine learning 
techniques, to develop comprehensive datasets covering key livelihood indicators. This 
technique closes gaps in the time series records of publicly available datasets and offers 
opportunities to customise indicators to better capture the impact of particular investments. 
This approach is, in part, inspired by recent work undertaken by Ratledge et al. (2022)20 at 
the University of Stanford, which used similar datasets to estimate the impact of electricity 
grid access improvements on the rate of growth in village-level assets. This study builds on 
learning from this work, which demonstrated how recent advancements in machine learning 
and satellite imagery can help ameliorate data gaps from traditional wealth indices, such as 
those from the Demographic and Health Surveys (DHS) Program. The process followed by 
Atlas AI to build its AWI dataset from available secondary data is outlined in Section 3.3 and 
Annex 4, including the steps taken to test and evaluate the accuracy of the model.

The use of geospatial data in the evaluation of investment projects is still in its 
infancy. This study, therefore, seeks to further ‘expand the envelope’ in terms of the 
methodological tools and data sources available to investors in this space. The approach 
holds a series of advantages for BII and other investors, including that: (i) it relies primarily 
on remote sensing rather than on-the-ground data collection and is therefore highly cost-
effective and scalable; (ii) it does not place a significant burden on investees (either in terms 
of data or time to engage) – the primary data requested of investees is geotagged data on 
their customers and minigrid infrastructure, ideally with further anonymised information 

19   For example, ‘confounding variables’, which might influence the results of the study, can be stripped out during their  
       construction.
20   Ratledge, N. et al. (2022) ‘Using Machine Learning to Assess the Livelihood Impact of Electricity Access’. Nature 611.

Figure 2. Illustration of treatment effect (not based 
on actual data)

https://www.nature.com/articles/s41586-022-05322-8.epdf?sharing_token=qebCedYPRbpCWyn_U8oE0NRgN0jAjWel9jnR3ZoTv0NuXPBjWvsmyT4oTcAX10AJcLvbZ2zqftxdhEsBfmpwANNwI7DwssTA_iQuFtV3h8m5iIQN9dpB8tCcM0gRZh4wzGsM64FQKYqDknPIqe4kDoEBgA9ju7sEpkcPecGo1jU%3D
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on customer profile and service use;21 and (iii) it does not require the collection of baseline 
data, instead making use of established geospatial records to enable researchers to ‘go back 
in time’ before the investment was made, which makes the approach much more flexible 
than traditional evaluation alternatives. However, the method currently has limitations, for 
example with regard to the extent to which impacts identified in secondary datasets can 
be disaggregated to the household level or by gender, although here we can look to other 
studies to understand further how impact is generated.

The solution developed in this study is designed to be replicable, scalable and cost-
effective and therefore to offer an alternative to traditional impact assessment approaches, 
which are time-consuming and expensive to implement. The solution is intended to be 
particularly applicable to data-sparse and fragile contexts, where traditional approaches may 
not be feasible. This study will produce learning for BII on how and in what circumstances BII 
can replicate this study and apply similar methods to measure impact across its portfolio.

3.3.    Our definition of impact – asset wealth
This study uses Atlas AI’s AWI to capture changes in standards of living as a result of 
being connected to the electricity minigrid. Asset wealth is selected as a robust proxy 
for living standards in this study because it is based on multiple dimensions of wealth and 
is considered to be a more reliable measure of households’ longer-run economic well-being 
than alternative monetary measures, such as spending. Atlas AI’s AWI is based on data 
sourced from the many georeferenced, nationally representative surveys conducted in SSA, 
which collect data on asset wealth. A principal data source is USAID’s DHS, which have been 
collected through representative household surveys for 30 years. Through these surveys, 
USAID calculates a household Wealth Index. A key advantage of this index is that it is less 
susceptible to errors in data collection than alternatives, given that many of the enumerated 
assets are directly observable to surveyors. The methodology Atlas AI uses to construct the 
AWI is aligned to that used by USAID to construct the Wealth Index. It is calculated based on 
a household’s ownership of selected assets, including televisions and bicycles, materials used 
for housing construction, and types of water access and sanitation facilities. Annex 4 provides 
additional detail on the assets included in the construction of the AWI.

In developing the AWI, Atlas AI uses an 
AI model trained on satellite imagery 
to make predictions on asset wealth. 
Historically, a key challenge in using 
secondary datasets to measure the impact 
of particular investments is that they are 
updated infrequently and there are often 
gaps in the data record, especially in conflict-
affected countries. The process developed 
by Atlas AI combines available secondary 
data on asset wealth with publicly available 
daytime and nighttime satellite imagery22 to 
predict asset wealth scores, even where the 
secondary data record is incomplete. The 
process is illustrated in Figure 4: an AI model 
(based on a convolutional neural network) 

21   It is recommended that this data is anonymised for ethical reasons.
22 Earth Observation’ datasets drawn from publicly available satellite image sources with coverage over the last 25 years  
        including multispectral Landsat bands over multiple generations and satellite imagery of nighttime lights.

Figure 3. Visualisation of AWI for cluster of 
settlements (2km × 2km). Lighter colour indicates 
a higher asset wealth value



      10October 2024

is trained to make predictions on asset wealth,23 drawing associations between satellite 
imagery and underlying secondary data on asset wealth. The model’s accuracy is tested 
against multiple datasets. In doing so, Atlas AI is able to use publicly available satellite data 
to close data gaps in secondary data on asset wealth. The version of Atlas AI’s AWI dataset24 
being used in this study provides annual estimates of asset wealth for the period 2012–21 
at a resolution of 2km × 2km polygons, meaning that each polygon and associated value 
represents a 4km2 area on the ground.

Figure 4. Illustration of the process and components in developing the AWI

Variables linked to electrification were removed from the AWI to reduce the risk of 
these potentially confounding variables undermining the results of the analysis. The 
AI model uses access to electricity (derived from satellite imagery of nightlights), and there 
was a risk that the independent variable would be confounded by the dependent variable. 
This component was therefore removed by adjusting both input imagery and correlated field 
survey indicators as follows:

1.	 A modified AWI was developed which did not include variables linked to electrification, 
such as appliances powered by electricity.25 Verification checks were conducted, which 
concluded that this modified AWI has an extremely high correlation with the original26 

 and therefore remains a robust measure of household wealth.

2.	 In the training of the AI model, nightlight data was removed to avoid issues of 
embedding a confounding variable in the data bands used. Verification tests were 
performed which identified a modest reduction in the predictive performance of the 
model, but this was judged to be of secondary importance when compared to the 
greater risk of experimental integrity. 

23 The approach to training the AI model using publicly available satellite imagery is discussed by Yeh, C. et al. (2020) ‘Using  
        Publicly Available Satellite Imagery and Deep Learning to Understand Economic Well-being in Africa’. Nature  
        Communications 11: 2583.
24 AWI is currently available for SSA and Southeast Asia.
25 This was done using principal component analysis (PCA) on a new set of variables.
26 r2 = 0.99.
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3.4    Limitations
Although the approach used in the study has a number of notable benefits,27 

it does have some limitations. It is not possible at present, for example, to disaggregate 
impacts for different socioeconomic groups (including for men and women), given that the 
resolution of the AWI dataset is to a maximum of 2km × 2km polygons. Nor is it possible at 
present to ‘look under the hood’ to isolate the precise drivers of increased asset wealth as a 
result of access to electricity. In relation to the findings, we are able to discuss how access to 
electricity is driving improved asset wealth and improved livelihoods by examining how AWI is 
created from component data points and with reference to the wider literature.

27 Including the completeness of the AI-derived AWI dataset, the ability to examine impacts retrospectively and the fact that  
        it does not require the collection of primary data, as discussed elsewhere in this report.
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4  Evaluation methodology
This section provides a step-by-step explanation of how the approach was defined in practice 
and implemented. The methodology is broken down into three key steps:

` Step 1: Identification of geotagged data on new connections and new infrastructure
to map where and when the project was rolled out over time. This enabled the treated
location to be identified, selected and included in the study.

` Step 2: Identification of non-treated locations in the same province that shared sufficient
similarities with the treated locations to form the basis of synthetic controls.

` Step 3: Comparisons of asset wealth accumulation over time between the treated and
synthetic control units are then used to identify the net effects of the intervention.

Each step is discussed in turn, explaining the design choices made and the substeps and 
actions in each part of the process.

4.1    Step 1: Identifying and selecting treated locations
4.1.1.    Data identification, entry and cleaning
Two principal datasets were identified and used to identify treatment settlements:

1. time series satellite imagery and Atlas AI proprietary datasets; and

2. geotagged data on electricity infrastructure and clients provided by VE.

The Atlas AI proprietary datasets28  used to identify settlements in this study include (i) 
the Atlas AI human settlement layer (to identify treated and non-treated settlements) and 
(ii) satellite data on nighttime light intensity (used as a proxy for prior electrification). The
analysis period is 2012–21,29 and the outcome of interest (asset wealth) varies annually.
Further information on how these datasets were used is outlined below. Atlas AI’s databases
provide a high degree of customisability. The ability to adjust and fine-tune the data points
used during the study offers a degree of flexibility which is typically not available in a
traditional impact evaluation design once on-the-ground data collection has commenced.
With regard to the latter dataset, geotagged data on electricity infrastructure and clients
provided by the project owner, VE, was used. This geotagged data on infrastructure and
clients enables tracking of the roll-out of the electrification project over time and the
identification of when, where and for how long different clients have been connected to the
new minigrid. This data was reviewed, cleaned, and entered into Atlas AI’s visualisation tool
and was matched to the Atlas AI human settlement layer so that connected settlements could
be identified in the Atlas AI dataset. (For further explanation of this process, see Sections
4.1.2 and 4.1.3. For a full list of data accessed, see Annex 2.)

28 Available in 2km × 2km polygons globally.
29 2021 was the most recent year for which AWI was available in treatment locations at the time of the study.
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4.1.2.    Working with Atlas AI’s human settlement layer to enter and  
              match geotagged connection data
Atlas AI’s human settlement layer 
represents the footprints of human 
activity around the world. Atlas AI uses 
proprietary AI models to fuse a range 
of input data sources at varying spatial 
resolutions to detect human settlements. 
This layer (formed of 2km × 2km polygons) 
forms the foundation of the analysis. It 
has been used to identify settlement areas 
that have been connected to the new 
hydroelectric scheme over time by VE, as 
well as non-treated settlements that form 
the basis of our synthetic controls (in Step 
2). Other datasets were overlaid onto this 
settlement layer, such as population size, 
distance from roads and AWI. In this way, 
a series of uniform 2km x 2km polygons 
was identified for both treated and non-
treated locations (the key unit of analysis) 
and was fused with other datasets to allow 
changes in the dependent variable (AWI) to 
be tracked and analysed over time. Non-
treated polygons formed the basis of the 
development of the synthetic controls (see 
Step 2). Figure 5 shows all settlement areas 
in Nord-Kivu, with a zoomed-in example 
of one settlement area with overlaid key 
attributes of asset wealth and population.

Geotagged data on electricity network 
assets, such as poles, wires and time-
stamped data on connections, was 
provided by VE and entered into Atlas AI’s 
visualisation tool. This data was cross-
checked against Atlas AI’s human settlement 
layer to identify all settlements and 2km 
× 2km polygons in Atlas AI’s database that 
overlap with the identified network assets. 
The dates of connections were used to 
assess the start of electrification in the 
treated settlements. Figure 6 highlights the 
locations of network assets and how they 
correspond to the locations of treated (in 
green in Figure 6) and untreated (in purple) 
settlements. In total, 48 treated settlements 
were identified across several regions, 
including Goma, Rutshuru and Lubero. Data 
validation checks revealed that this process 
had successfully identified the vast majority 
of connected settlements.

Figure 5. Nord-Kivu human settlement layer

Figure 6. (i) Location of electricity network 
assets (poles and wires); (ii) treatment sites 
(green); and all other settlements (purple)
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4.1.3.    Identifying treated settlement clusters and selecting treated
Geotagged data on new connections and the 
installation of new electricity infrastructure 
was provided by VE.30 This data reveals that 
the investment has been highly successful 
in reaching new customers: in total, the 
minigrid achieved 25,856 new connections 
from 2017 to 2022 (against an initial target 
for the first phase of the investment of 
10,000–12,000). By entering and mapping 
time-stamped data on connections into the 
Atlas AI visualisation tool, we were able to 
chart the roll-out of the project and identify 
three principal settlement clusters which 
were connected at different points in time: 
Rutshuru Region, electrified in 2017 (in 
which we can identify 31 settlements in 
Atlas AI’s human settlement layer); Goma 
City, electrified in late 2019 (in which we can 
identify one settlement in Atlas AI’s human 
settlement layer); and Lubero Region (in 
which we can identify 16 settlements in 
Atlas AI’s human settlement layer). Table 1 
presents connection data by settlement  
over time.

Table 1. Connection data by settlement over time

Cluster Connection 
date

No. of settlements in Atlas AI 
human settlement layer

Cumulative connections

2017 2022

Rutshuru 2017 31 1,880 7,399

Goma Late 2019 1 0 17,643

Lubero Late 2021 16 0 230

Two criteria were applied for the selection of treated settlements to include in later impact 
analyses: (i) the availability of time series data over a sufficiently long time horizon, to account 
for any time lag between treatment and impact; and (ii) the likelihood of finding credible 
counterfactuals. A similar study31 on the impact of electrification on indicators of household 
well-being highlighted a lag of approximately four to five years between connection and 
livelihood impact. Given that AWI data (the dependent variable) is available for the period 
2012–21, the study focused on the earliest connected settlements in order to maximise 
the chances of isolating evidence of causal impact. With regard to the likelihood of finding 
credible counterfactuals, although the approach is based on the construction of synthetic 
controls, the methodology used still requires the identification of a ‘donor pool’ of broadly 
similar real-world non-treated settlements from which these synthetic controls could be 
developed. For this reason, a decision was taken to exclude significant outlier settlements in 
the dataset. This resulted in the decision to exclude Goma City, on the basis that it has unique 
characteristics in Nord-Kivu, with a larger and wealthier population than other settlements. 

30 This data was available for the period 2017–22.
31 Ratledge, N. et al. (2022) ‘Using Machine Learning to Assess the Livelihood Impact of Electricity Access’. Nature 611

 

Rutshuru Region – 2017 
group

 

Goma City – 2019 group

Lubero Region – 2021 
group

Figure 7. Principal treated settlement cluster

https://rdcu.be/cZOHV
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After applying both criteria, 31 settlements in Rutshuru Region were selected to be included 
as part of the later steps of the impact analysis approach.

After selecting treated settlements in 
Rutshuru Region to focus on as part of 
the analysis, a check based on time series 
satellite data of nighttime light intensity was 
conducted to understand if, and to what 
extent, the Rutshuru communities had prior 
access to electricity (before connection 
to the new grid in 2017).32 This resulted in 
Rutshuru settlements being divided into 
two groups: ‘previously electrified’ (13 
settlements) and ‘previously unelectrified’ 
(18 settlements). This separation of treated 
settlements was used in the analysis to 
understand if, and to what extent, there 
is a difference in outcomes between both 
groups, with the working assumption that 
improvements in livelihood status will be 
greatest for settlements which have had no 
prior access to electricity.

Comparing the average characteristics of the 
selected treated settlements to the averages 
for Nord-Kivu province in the year treatment 
started (2017), we found the following:

1.	 They have a slightly higher asset wealth than the average for the province. The AWI for 
this group as a whole places them in the 79th percentile of the AWI distribution for all 
settlements in the province.

2.	 They tend to have a slightly larger population than the average for the province. This 
is explained by the large number of small settlements found in the human settlement 
layer in Nord-Kivu, in particular in the western half of the province.

3.	 They tend to be closer to a main road than the average for the province. This is explained 
by the placement of transmission infrastructure along existing road infrastructur.

 
 

32 This analysis used a cut-off of 70% nighttime light intensity to separate ‘previously electrified’ from ‘previously  
        unelectrified’. A light intensity of above 70% is typically aligned to electricity access as opposed to other nighttime light  
        sources such as charcoal or other fuelwood.

Figure 8. Previously unelectrified group (green) and 
previously electrified group (brown)
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Figure 9. Distribution of 2017 asset wealth (baseline) for all settlements in Nord-Kivu, highlighting treated 
settlements

 
4.2.   Step 2: Identifying and selecting non-treated locations
Following identification of treatment locations, the evaluation identified and mapped non-
treated settlements in Nord-Kivu province as the starting point from which to develop 
synthetic control units. This involved a two-stage process: first, identifying and mapping 
all non-treated settlements in Nord-Kivu; second, identifying a shortlist (a ‘donor pool’) of 
sufficiently similar settlements from which we could develop the synthetic control units.

4.2.1.    Identifying and mapping non-treated locations in the human  
              settlement layer
The first step in selecting non-treated 
locations to include in the analysis was 
to identify and map all non-treated 
settlements in Nord-Kivu in the Atlas AI 
human settlement layer. The identification 
of non-treated settlements was constrained 
to Nord-Kivu province (rather than mapping 
settlements in adjacent provinces or in the 
DRC more broadly) for two reasons. First, 
through the identification nearly every 
settlement in Nord-Kivu was mapped, which 
provided a deep ‘candidate pool’ from 
which synthetic control groups could be 
developed (the study identified a total of 
9,423 settlements in Nord-Kivu). Second, the 
study assumed that treated and non-treated 
settlements in the same province are likely 
to share a high degree of similarity – higher 
than treated and untreated settlements in 
more distant provinces.

Figure 10. Non-treated settlements in Nord-Kivu



      17October 2024

4.2.2    Selecting a ‘donor pool’ of non-treated settlements
Rather than developing synthetic control units from all non-treated settlements in Nord-Kivu 
province, identified non-treated settlements were narrowed down to a shortlist (a ‘donor 
pool’) of settlements which would form the basis of the synthetic controls. The selection was 
narrowed down in this way for two reasons. First, it allowed the exclusion of settlements that 
demonstrated significant differences across key metrics prior to electrification (especially 
with regard to trends in asset wealth)33 and hence the achievement of a closer initial match 
between donor pool and treated settlements. This strategy was adopted in recognition of 
the fact that VE had not targeted settlements at random; instead, the first settlements to be 
connected to the minigrid were those located close to newly installed electricity distribution 
infrastructure, which had in turn been sited along significant roads for ease of construction. 
It was likely, therefore, that treated settlements would not be typical of the wider region, 
because they were located closer to significant roads and were therefore likely larger in 
size and wealthier. The selection strategy therefore took account of these differences and 
helped ‘match’ treated settlements to a donor pool of broadly similar settlements. Second, 
constraining the selection of non-treated settlements to a smaller donor pool significantly 
reduced the complexity of the downstream analysis required to produce synthetic control 
units.

Cosine similarity analysis was used to sift through the full candidate pool of non-treated 
settlements in Nord-Kivu province and identify the top 10 most similar sites from the 
candidate pool for each non-treated settlement, based on similar patterns and trends across 
four key attributes of interest in the Atlas AI dataset (see Table 2). This was done for both the 
previously unelectrified and the previously electrified treatment subgroups; duplicate sites34 
that appeared in the analysis were removed. The purpose of the cosine similarity testing 
process was not to identify a donor pool of settlements that were identical to the treated 
settlements; rather, it was to develop a donor pool of broadly similar settlements from which 
the synthetic control units could efficiently be developed, with the synthetic control analysis 
itself taking care of the remaining differences to produce a much closer ‘fit’.

Table 2. Atlas AI datasets used for cosine similarity testing

Attributes used in cosine similarity testing

2012 Asset Wealth Index

2016 Asset Wealth Index

2016 population size (disaggregated by gender)

Distance to major roads

Asset wealth was identified as a key indicator of similarity between the treatment group 
and the candidate pool. Cosine similarity testing was conducted between treated settlements 
and the full candidate pool at two points in time (2012 and 2016) to identify settlements that 
were trending similarly prior to treatment.

Population size and distance to major roads (as a proxy for accessibility to markets) were 
adopted as additional key attributes to enhance the matching between the treatment 

33 We did not include asset wealth in the post-treatment analysis, because this risks introducing bias into the final results.
34 That is, where the same site in the full candidate pool had been selected more than once as being similar to a treatment  
        site.



      18October 2024

group and the donor pool and to select between candidate pool settlements that otherwise 
had similar characteristics. As with AWI and the human settlement layer dataset, the 
completeness of the additional datasets used in the cosine similarity testing was reviewed. 
The study found these to have a high degree of reliability. For instance, although there 
may potentially be gaps in the data record for the road layer, owing to its reliance on user-
provided information, the study found that the data records for primary, secondary and 
tertiary roads (the categories we utilised to identify major roadways) were comprehensive.

This approach resulted in very few instances of missing data. Settlements were identified 
using the WorldPop geospatial population dataset, which is limited by the boundaries of 
settlement areas. Consequently, there were isolated instances where the model failed to 
recognise a settlement but where Atlas AI’s human settlement layer succeeded. However, it is 
worth noting that such occurrences were extremely infrequent and impacted only a minute 
fraction of settlements identified by the human settlement layer. As a result, these cases 
were omitted from the analysis. The number of settlements affected by this removal was 
not statistically significant and was observed primarily in areas containing approximately 10 
houses or fewer.

4.2.3.    Results of cosine similarity testing to identify a ‘donor pool’
The aim of the cosine similarity testing was to identify a donor pool of non-treated 
settlements that had a higher degree of similarity with the treated settlements than did the 
wider candidate pool of non-treated settlements as a whole. We carried out cosine similarity 
testing to identify a donor pool for both the previously unelectrified treatment group and the 
previously electrified treatment group in Rutshuru.

Previously unelectrified group cosine results
Cosine similarity testing yielded a donor pool of 161 non-treated settlements35 for the 
unelectrified settlement subgroup. As illustrated in Figure 11, this donor pool identified 
through the cosine similarity analysis has a much closer fit with the treated settlements than 
between the treatment group and the candidate pool overall.

Figure 11. Comparison of ‘fit’ in AWI between previously unelectrified treated settlements and settlements in 
the full candidate pool (left) and donor pool (right)

35  Once duplicate sites had been removed.
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Previously electrified group cosine results
Cosine similarity analysis for the previously electrified group yielded a donor pool of 
96 settlements. Again, the analysis indicates a much closer fit between these donor 
pool settlements and the treatment group than between the candidate pool and treated 
settlements overall.

Figure 12. Comparison of ‘fit’ in AWI between previously electrified treated settlements and settlements in 
the full candidate pool (left) and donor pool (right)

	

 
Figure 13 provides an overview of the location of donor pool settlements for both the previously 
unelectrified and previously electrified subgroups in Rutshuru.
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4.2.4.    Summary of settlement locations
The study deals with the following 
categories of settlements in Nord-Kivu: (i) 
all identified treated settlements (in green 
in Figure 14), from which the Rutshuru 
group was purposively selected based on 
connection date; (ii) all identified non-treated 
settlements (the candidate pool) (in purple); 
and (iii) an identified ‘donor pool’ of non-
treated settlements (selected through cosine 
similarity analysis with treated settlements) 
(in yellow). The study focused on settlements 
in Rutshuru selected on the basis of length 
of connection, dating from 2017. The 
settlements are divided into previously 
unelectrified and previously electrified 
groups. Goma and Lubero clusters were not 
selected, based on the date of connection 
and challenges with regard to identifying a 
suitable comparator (in the case of Goma). 

4.3.    Step 3: Conducting synthetic control analysis
4.3.1.    Synthetic control method with elastic net
The original classical SCM approach was designed primarily to estimate the effects of 
large aggregate interventions focused on a small number of large treatment units (typically 
one), where data is available (for both dependent and independent variables) over a longer 
time horizon. This study applied this approach in a slightly different context in which there 
are multiple treated and non-treated units and where data is available over a relatively 
short time horizon (both pre- and post-treatment). In this context, the data could have been 
aggregated before the analysis stage, and the classical SCM approach could have been 
applied across all the treated and non-treated pool units as one, but this would have risked 
masking underlying data heterogeneity. Alternatively, classical SCM analyses could have been 
conducted for all individual treated and non-treated units separately, but this would have 
been highly resource-intensive and would have risked overcomplicating the analysis stage.

A modified version of the classic SCM approach, ‘SCM with elastic net’, was adopted 
in this study as being the most appropriate to the given situation. SCM with elastic net 
offers a more relaxed definition, with a regularisation function that helps the model to make 
generalisations when predicting the counterfactual for post-treatment years but avoiding 
overfitting. This is helpful in situations (such as this one) where the data record is not 
extensive and there are residual differences between treatment units and the donor pool.36 
It is a variation which has been used frequently in the literature.37  As illustrated in Figure 
15, in this context SCM with elastic net offers the ‘best of both worlds’ in terms of striking 
a pragmatic balance between applying the classical SCM approach across all treated units 
separately and running a single classical SCM across all treated units as one.

36 Based on the use of an elastic net drawing on a combination of least absolute shrinkage and selection operator (LASSO)  
        and ridge penalties.
37 Ratledge, N. et al. (2021) Using Satellite Imagery and Machine Learning to Estimate the Livelihood Impact of Electricity Access. 

Figure 14. Overview of selected locations

https://www.nber.org/system/files/working_papers/w29237/w29237.pdf
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Figure 15. Visualisation of the selection of SCM

 

 
Annex 3 provides a more detailed comparison between the classical SCM approach and SCM 
with elastic net, and provides more detail on the specific technical definition of ‘SCM with 
elastic net’ used in this study, including some of the implications of relaxing the constraints of 
the classical SCM used.

In practice, the version of the SCM with elastic net used in the analysis was defined as follows:

1.	 Weights of donor units are not restricted to sum to 1.
2.	 Weights of donor units cannot be negative.
3.	 No intercepts are allowed (an intercept allows for a level shift where the trend remains 

the same).
This is a variation on the standard SCM with elastic net. Typically, the ‘non-classical’ SCM with 
elastic net also relaxes the SCM approach to allow weights to be negative (which is a further 
advantage when dealing with data over shorter time horizons). In this case, this further 
relaxation of the model was deemed not to be necessary, given that an in-depth cosine 
similarity analysis of untreated settlements had been done to identify a donor pool which is 
broadly similar to treated settlements pre-treatment.38 39

Synthetic control units were developed to closely approximate the behaviour of the 
connected settlements before treatment. As discussed in Section 4.1.3, settlements in 
Rutshuru were divided into two groups: (i) the 18 ‘previously unelectrified’ settlements; 
and (ii) the 13 ‘previously electrified’ settlements. Synthetic control units were developed to 
closely match the behaviour (in AWI) of connected settlements in both groups in the period 
pre-treatment (2012–16). Synthetic control units were composed of the weighted averages of 
settlements in their respective donor pools (see Annex A3.2 and A3.3 for more information 
on how these synthetic control units were structured). The model predicts the counterfactual 
by weighting each post-period control variable. These weights are determined through panel-
like regression within the pre-treatment period, in which a single treated unit is regressed on 
the full panel of control units.

As highlighted in Figure 16 and Figure 17 (Section 5), the created synthetic control units 
closely matched the behaviour of the connected settlements in the years prior to treatment 
and therefore formed the basis of a credible counterfactual to identify net treatment effects. 
The study team tested different versions of the SCM approach; the modified version of the 
SCM with elastic net produced the closest fit without excessive overfitting.

38 It was determined not to allow weights to be negative, to produce a more ‘real’ and less overly ‘synthesised’ effect.
39 In terms of technical specification, the model used did not include covariates and incorporated an alpha of 0.5 (elastic  
        net), which is a mix of LASSO and ridge penalties.
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5.  Key findings
This section discusses the findings of the impact evaluation. The section looks first at whether 
the SCM was successful in mimicking the behaviour of connected settlements in the study 
years prior to treatment (2017–21). It then presents evidence of impact for two groups of 
settlements which have been connected to the new VE hydroelectric minigrid: (i) settlements 
which received access to electricity for the first time; and (ii) settlements which are more 
likely to have had some form of access to electricity before the investment was made. The 
size of the treatment effect (in terms of a change in AWI score) is highlighted for both groups, 
and a robustness check is performed on the results. The section then puts the findings into 
broader context, firstly to understand how they compare to the results of similar studies and 
secondly to discuss how connection to the electricity minigrid is likely driving changes in asset 
wealth at the household level.

5.1.    Change in asset wealth for connected settlements
Analysis indicates that connection to the minigrid produced an identifiable increase 
in asset wealth for settlements in the Rutshuru group, over and above the synthetic 
control. In the period post-treatment (2017-21), changes in asset wealth in connected 
settlements were compared to changes in asset wealth in the synthetic control units, to 
identify a net treatment effect. In both the previously unelectrified and previously electrified 
groups, the behaviour of the connected settlements diverged from their synthetic control 
units after connections to the minigrid in Rutshuru began (in 2017), with the AWI scores for 
both groups increasing more rapidly than those of their respective synthetic control units. 
This indicates that connection to the minigrid resulted in a net increase in asset wealth.

The identified net treatment effect is strongest and most consistent in the ‘previously 
unelectrified’ group, which were more likely to have no prior access to electricity. The 
divergence in behaviour between connected settlements and their synthetic control units 
is greater and more consistent in the previously unelectrified group (Figure 16), indicating 
a stronger treatment effect in these settlements. This is a plausible finding given that these 
settlements are more likely to have experienced the full benefit of a new connection to the 
electricity grid, in contrast to the previously electrified settlements, which are more likely 
to have shifted from an alternative source of electricity (such as a more expensive and less 
reliable diesel generator).

Figure 16. Change in Asset Wealth Index scores for the previously unelectrified settlements vs synthetic 
control (treatment time indicated by dotted line)
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Figure 17. Change in Asset Wealth Index scores for the previously electrified settlements vs synthetic control 
(treatment time indicated by dotted line)

Further detail on the size of the treatment effect for the previously unelectrified and 
previously electrified groups is provided in Table 3 and Table 4. The AWI score for the 
previously unelectrified treatment group increased by 0.223 above that of the synthetic 
control group over the treatment period.40 Although AWI cannot be expressed as a dollar 
value, by calculating standard deviations it is possible to get a sense of the relative size of this 
change. The standard deviation is 0.46, suggesting that this is a significant change relative to 
AWI scores for the whole of Nord-Kivu (see also Section 4.3). The net increase in AWI for the 
previously electrified group was smaller: 0.146 (Table 4).

In the previously unelectrified group, AWI grew strongly in the period post-treatment. As 
illustrated in Table 3, it grew by 28% in the period 2018–21 vs 15% for the synthetic control 
group, providing further evidence of the impact of connection to the minigrid on livelihood. 
Early evidence suggests that this rate of growth is increasing over time; this is in line with 
other studies which suggest that the impact of electrification takes some time to emerge.

Table 3. Treatment effect size and AWI growth rate in treatment and synthetic control groups for previously 
unelectrified settlements by year

Year​ 2017​ 2018​ 2019​ 2020​ 2021​
Mean AWI for treatment 
group -0.7986 -0.8220 -0.7685 -0.6504 -0.5898

Mean AWI for synthetic 
control group -0.7998 -0.9534 -0.9115 -0.8512 -0.8130

5th percentile AWI for 
treatment group -1.2287 -1.3120 -1.2596 -1.1991 -1.1071

95th percentile AWI for 
treatment group -0.4154 -0.3816 -0.2773 -0.1991 -0.0559

Treatment effect 0.001 0.131 0.142 0.200 0.223
Treatment group growth 
rate -2.9% 6.5% 15.4% 9.3%

Synthetic control growth 
rate -19.2% 4.4% 6.6% 4.5%

40  The version of AWI being used in this study has the following min/max values: -1.0113611 (min), 2.0468638 (max).
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Table 4. Net treatment effect size for previously electrified settlements by year

Year 2017 2018 2019 2020 2021

Mean AWI for treatment 
group -0.8393 -0.8503 -0.7844 -0.8152 -0.7373

Mean AWI for synthetic 
control group -0.8271 -0.9928 -1.0001 -0.9362 -0.8837

5th percentile AWI for 
treatment group -1.1627 -1.1610 -1.1592 -1.2524 -1.1970

95th percentile AWI for 
treatment group -0.3469 -0.3171 -0.2338 -0.1822 -0.1282

Treatment effect -0.012 0.142 0.216 0.121 0.146

Treatment group annual 
growth rate -1.3% 7.8% -3.9% 9.6%

Synthetic control annual 
growth rate -20.0% -0.7% 6.4% 5.6%

A drop in AWI was detected in the synthetic control units in the years immediately post-
treatment, and it is not clear what has caused this change. This drop is consistent for the 
synthetic control units for both previously unelectrified and previously electrified groups, and 
it is consistent in different versions of the synthetic controls that were tested. It should be 
noted that it is not uncommon in this type of impact assessment for impact to result from a 
fall in the dependent variable(s) in the control units; this is likely driven by broader dynamics 
in the region, as discussed below. The challenge here is the relatively short time horizon in 
data post-treatment (2017–21); repeating this study over a longer time horizon would likely 
help even out these effects.

Given that AWI is a relative index which is normalised across the region, it is likely that it is 
influenced by changes in AWI scores and other socioeconomic indicators both in Nord-Kivu 
and in adjacent regions. A review of AWI trends in other untreated settlements in the wider 
candidate pool consistently identified this fall in AWI. A review of trends in socioeconomic 
indicators in the DRC more broadly can also provide clues as to why these variations in AWI 
may be occurring. Although detailed data is not available for Nord-Kivu province specifically, 
data taken from available sources suggests that the DRC experienced a high degree of 
volatility in headline development indicators during the treatment period, and especially in 
the period immediately following the treatment in 2017. This volatility might help to explain 
this fall in AWI. For instance, data taken from the World Bank’s World Development Indicators 
(Figure 18) reveals that GDP per capita generally increased in the period post-treatment but 
experienced a notable fall in the period immediately prior to treatment (2015–16). Likewise, 
data from the Internal Displacement Monitoring Centre (iDMC) reveals that there was a 
significant spike in internally displaced people in the DRC in 2016 and 2017 (Figure 19), which 
would also be expected to negatively affect livelihood indicators, including AWI. Although this 
data cannot be disaggregated by region, reporting from Human Rights Watch indicates that 
Nord-Kivu province was significantly affected by violence during this period, with more than 
3,000 violent incidents reported in the province from 2017 to 2019.41 

41 DR Congo: 1,900 Civilians Killed in Kivus Over 2 Years

https://www.hrw.org/news/2019/08/14/dr-congo-1900-civilians-killed-kivus-over-2-years
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Figure 18. GDP per capita for the DRC 2012–22 (source: World Bank World Development Indicators)

Figure 19. Internally displaced people in the DRC 2012–22 (source: iDMC)

 
5.2.    Robustness check
To understand the significance of the results, a robustness check was performed. 
This indicates that the results are significant at a 90% confidence level. To check the 
significance of the results, the average AWI score for the previously unelectrified settlements 
was plotted against the AWI scores for all units in the donor pool of untreated settlements 
(161 settlements). The purpose of this analysis is to put the change observed in the treated 
settlements into a broader perspective and to help determine the extent to which the trends 
seen in the Rutshuru group of treated settlements are also happening in the wider donor 
pool of unconnected (but similar) settlements.42 This is to give enhanced confidence that 
it is connection to the minigrid that is driving the change in AWI rather than other factors 
outside of the project (for example, ‘could the change be happening by chance?’). In their 
influential study of the effect of the California Tobacco Control Program, Abadie, Diamond 
and Hainmueller (2010) perform this type of robustness check by overlaying the performance 
of their treatment unit (California) with those of their placebo units (their donor pool of non-
treated US states).43

42 Which in other key respects are very similar to the treated settlements, as discussed in Section 3.
43 Abadie, A., Diamond, A. and Hainmueller, J. (2010) ‘Synthetic Control Methods for Comparative Case Studies: Estimating  
        the Effect of California’s Tobacco Control Program’. Journal of the American Statistical Association 105(490): 493–505.
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Figure 20. AWI score for previously unelectrified settlements plotted against AWI scores for all units in the 
donor pool of untreated settlements

When a similar approach is adopted as part of this study, as illustrated in Figure 20, over the 
course of the treatment period from 2017 to 2021, the treated settlements in the ‘previously 
unelectrified’ group (represented by the dark line) are found to outperform all but 16 of 
the untreated settlements in the donor pool. This equates to only 16 out of 161 untreated 
settlements (or one in 10) in the donor pool outperforming connected settlements. This can 
be further interpreted as indicating that the results are significant at a 90% confidence level.44 
In statistical terms, a ‘gold standard’ confidence level is typically 95%. Nevertheless, this 
result is still considered significant, and it strongly suggests that the result did not happen 
by chance and that connection to the grid was a significant factor in driving the increase in 
asset wealth in connected settlements. These observations are based on relatively short 
time horizons, however; repeating the analysis over a longer time horizon as this investment 
continues to mature, including analysing AWI for additional treatment clusters, will further 
increase confidence in the results.

5.3.    Putting results into context: placing connected   
           settlements’ AWI onto Nord-Kivu province’s AWI  
           distribution
Because it is not possible to express AWI as a benchmarked income figure, the change 
in AWI for newly connected settlements was analysed against the distribution of AWI 
for the whole of Nord-Kivu province. To understand the significance of the change in AWI 
for the ‘previously unelectrified’ group of settlements, their 2021 AWI scores were plotted on 
the distribution of AWI scores for all settlements in Nord-Kivu province. Ideally, the change 
in AWI would be converted to a benchmarked income figure (such as $/month) in order to 
understand the impact of grid connection on settlements’ poverty levels. However, this is not 
currently possible, and therefore this approach provides a second-best alternative. Plotting 
the change in AWI against the asset wealth scores for the province as a whole helps to put 
the change into context and to understand how much connection to the minigrid helped 
‘move the needle’ on asset wealth relative to the performance of all other settlements in the 
province.

44 We calculate the confidence interval based on the probability that the results were not caused by treatment: 16/161 gives  
        a probability of 0.1 that the effects found were not due to treatment, and therefore a 90% confidence interval.
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It is helpful to think of the change in asset wealth in these relative terms, given that the AWI is 
a relative measure (calculated on a normalised index with both positive and negative values, 
ranging from –2 to 2). This analysis follows on from that presented in Section 3, which plotted 
the ‘previously unelectrified’ group’s AWI scores against those of the whole province in 2017, 
before treatment began.

Analysis of AWI scores for the whole province reveals that the newly connected 
settlements’ asset wealth has increased significantly relative to the provincial average. 
Plotting the ‘previously unelectrified’ group’s AWI against the distribution of AWI for the whole 
of Nord-Kivu province in 2017 and 2021 reveals that the connected settlements’ growth 
in asset wealth has improved significantly vis-à-vis all settlements in the province. In the 
period post-treatment (2017–21), the growth in asset wealth propelled them from the 79th 
to the 86th percentile (see Figure 21). At the same time, the synthetic control group fell in the 
distribution from the 79th percentile in 2017 to the 75th percentile in 2021. The treatment 
effect size equates to an increase of around 0.46 standard deviations.

Figure 21. The changing position of the treatment group in terms of asset wealth when set against the 
distribution of asset wealth for all settlements in Nord-Kivu

5.4.    Comparing the results to other studies
Although there are few comparable studies to draw on, the results of this study are 
broadly comparable to those of a similar study undertaken in Uganda. To date, the 
use of AWI to assess the impact of connections to electricity grids is still in its infancy and 
has been used in relatively few published studies. However, a prominent study published in 
Nature in 202245 made use of AWI derived through satellite imagery and machine learning 
techniques in a broadly similar manner to assess the impact of electricity access in Uganda, 
albeit without the use of synthetic control units to establish the counterfactual. This study 
also used AWI as a reliable and cost-effective proxy to estimate the livelihood impact of 
electricity access in a data-sparse location.

The Uganda study found evidence that connection to the electricity grid has a net positive 
impact on AWI scores, with the treatment effect increasing over time. Figure 22 highlights the 

45 Ratledge, N. et al. (2022) ‘Using Machine Learning to Assess the Livelihood Impact of Electricity Access’. Nature 611. 

https://rdcu.be/cZOHV
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net treatment effect observed for the treated groups in this study and in the Uganda study 
(calculated as the change in AWI scores for treated settlements minus the change in AWI 
scores for the synthetic control units). The estimated size of the treatment effect is generally 
in the same band, with the behaviour of this study’s ‘previously unelectrified’ group and the 
Uganda study’s treatment group being broadly comparable. In the case of the Uganda study, 
connection to the grid was found to increase village-level asset wealth by up to 0.15 standard 
deviations and doubled the growth rate in AWI for treated villages during the post-treatment 
period relative to untreated areas.

Figure 22. Comparison of the net treatment effect observed for this study’s ‘previously unelectrified’ and 
‘previously electrified’ groups and the treatment group in the Uganda study

The wider literature provides clues as to how electricity connections drive 
improvements in asset wealth for households. Through our study approach we are not 
able to ‘look under the hood’ to isolate the precise drivers of increased asset wealth at the 
household level as a result of improved access to electricity. However, we can identify some 
of these drivers, and explore how access to electricity affects men and women differently, 
with reference to the wider literature (although this is still sparse). One study46 which 
reviewed the impact of home solar connections asked respondents to identify the most 
significant improvements in their household as a result of first-time access to electricity. The 
improvements most frequently cited by respondents included: studying/reading at night 
(58%); entertainment (47%); extension of business and working hours (16%); and cooking at 
night (16%). A further study47 finds evidence that access to electricity:

	` significantly impacts female employment (around 9.5 % within five years), partly by 
‘freeing up’ women’s time for the job market;

	` facilitates new activities for men and women in the home, allowing them to produce 
goods to sell in local markets; and

	` results in large increases in the use of electric lighting and cooking, and reductions in 
wood-fuelled cooking, over a five-year period.

46 Gustavsson, M. and Ellegård, A. (2004) ‘The Impact of Solar Home Systems on Rural Livelihoods. Experiences from the  
         Nyimba Energy Service Company in Zambia’. Renewable Energy 29(7): 1059–72.
47 Dinkelman, T. (2011) ‘The Effects of Rural Electrification on Employment: new evidence from South Africa’. American  
        Economic Review 101(7): 3078–3108.
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The way the AWI used is constructed helps us to understand how changes in asset 
wealth at the household level are driven by access to electricity. The AWI for the DRC 
captures a range of factors which are influenced by new or improved electricity connections 
in the short, medium and longer terms. For instance, the index captures the presence of 
attributes which will be impacted almost immediately by a connection to the minigrid, 
including a household electricity connection, ownership of a range of small appliances which 
rely on an electricity connection (including telephones, radios, televisions, fridges and sewing 
machines) and the type of energy used for cooking (either an electric stove or other fuel).

In the medium term, such changes are likely to lead to new or improved livelihood 
opportunities for connected households, for example enabling households to start or 
expand business activities in the home (such as establishing small shops). In turn, these 
benefits will allow connected households to purchase larger assets which feature in the 
AWI, some of which will strengthen this livelihood effect further (such as improved access to 
markets through the purchase of a motorcycle). In the longer term, these benefits will enable 
connected households to make additional and more significant asset purchases captured by 
their asset wealth scores, including improvements to sanitation or the fabric of their homes. 
The Nature (2022) study suggests a time horizon of between four and five years for the first 
significant livelihood impacts to emerge as a result of improved access to electricity, although 
initial impacts are expected to emerge more quickly than this.48 Annex 4 provides further 
detail on the individual assets captured by the AWI for the DRC.

48 Ratledge, N. et al. (2022) ‘Using Machine Learning to Assess the Livelihood Impact of Electricity Access’. Nature 611. 

https://rdcu.be/cZOHV
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6. Conclusions and recommended
next steps

This section outlines key conclusions and recommends next steps for BII and FCDO. The key 
conclusions are framed according to the original two key study purposes, focusing on: (i) the 
extent to which the study has been able to identify evidence of impact from BII’s investment 
in VE and, in doing so, fill a strategic evidence gap for BII in the infrastructure portfolio; and 
(ii) whether this study has been able to demonstrate ‘proof of concept’ for an innovative,
low-cost and rigorous approach to assessing impact in infrastructure projects, including
identifying some of the key issues that BII and FCDO should take into account in applying this
approach in future.

6.1.    Evidence of impact from BII’s investment in Virunga 
          Energies
The investment has been highly successful in reaching new customers. By accessing 
geotagged data on new connections and the installation of new electricity infrastructure, 
this study charted the roll-out of the rural electrification project to three settlement clusters. 
In total, the minigrid achieved 25,856 new connections from 2017 to 2022 against an initial 
target (for the first phase of the investment) of 10,000–12,000.

The study has found strong evidence that the minigrid has improved access to 
electricity for poorer and underserved communities. The study focused attention on 
one main settlement cluster, Rutshuru, as this was the earliest to be connected (in 2017) and 
therefore had the longest time horizon for impact to emerge. By analysing satellite nightlight 
data, this study is able to make a firm conclusion that 18 out of 31 settlements in this cluster 
are very likely to have had access to electricity for the first time as a result of this investment.

Newly connected settlements have experienced an improvement in their standard of 
living as a result of connection to the minigrid. The study uses asset wealth as a robust 
and widely accepted proxy for living standards. By applying the new approach, this study 
identifies a net increase in asset wealth for households that have been connected to the 
electricity grid, with this impact being strongest among households who have accessed 
electricity for the first time. The identified rate of growth in the AWI for households which 
have accessed electricity for the first time doubled since connection, leading to a jump from 
the 79th to the 86th percentile for asset wealth (set against the distribution of all households 
in Nord-Kivu).

The results of this study are relevant to three currently ‘under-evidenced’ areas in 
BII’s sector impact framework for power infrastructure. These three areas, highlighted 
in red in Figure 23, focused on: (i) reaching new customers; (ii) expanding access to electricity 
for previously underserved communities; and (iii) improving standards of living. Alongside 
minigrids, the results of this study are particularly relevant to investments which have similar 
business models and objectives, in particular home and off-grid solar.49 

49 A minigrid is a set of small-scale electricity generators interconnected to a distribution network that supplies electricity to  
        a small, localised group of customers and operates independently from the national transmission grid. Home solar  
        systems typically consist of solar panels (either with or without battery storage) which are built on the roof of a home or 
        business. Off-grid solar solutions are typically built off site (of a household or businesses), involve battery storage, and  
        are completely autonomous from the grid.
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Figure 23. Study results linked to BII impact framework for power investments

 
Recommended next steps:

1.	 Based on the evidence collected through this study, BII should consider making 
additional investments in minigrid or similar solutions, especially in underserved 
rural areas. This study provides strong evidence that such solutions are effective in 
improving access to electricity in rural areas and in driving changes in standards of 
living, including in poorer and previously underserved locations. To maximise impact, 
BII should consider making additional investments in this space, especially where these 
investments open access to electricity for populations which currently have limited or 
no access to electricity. Additional evidence is needed to understand impacts in other 
contexts (such as urban and peri-urban locations) and to understand the comparative 
benefits of related investment types, such as home solar and off-grid solutions.

2.	 Deepen the evidence base for this investment, including in additional treatment 
locations, as impacts begin to emerge. This study makes use of data over a relatively 
short time horizon to explore evidence of impact (2017–21). Given the likelihood that 
impact will deepen over time, BII should consider repeating this study in about five 
years, focusing in particular on the way impact has developed as this investment is rolled 
out to new locations. This will increase confidence in the results and further strengthen 
learning on the situations in which this investment (and minigrids more broadly) has the 
greatest impact.

3.	 Identify opportunities to ground-truth findings for this investment and to 
understand the drivers of change at the household level. BII can seek opportunities 
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to ground-truth the findings of this study by comparing the results to evidence collected 
through other methods, including primary data. For example, the University of Antwerp 
is currently undertaking a study which is looking more broadly at impact accruing to 
the VE investment, using an impact assessment methodology based on difference-
in-difference analysis. This study involves on-the-ground primary data collection at 
household and settlement levels and provides a good opportunity to ground-truth the 
findings of this study and to understand more about how and why connections to the 
minigrid drive improvements in living standards. It should be noted that this is a much 
larger study with a different purpose and that it involves data collection over several 
years. 

6.2.    Demonstrating ‘proof of concept’
This study demonstrates the successful development and use of a rapid, cost-effective, 
flexible and technically rigorous approach to measuring the impact of infrastructure 
investments, based on new thinking in impact evaluation design. The use of a geospatial 
impact evaluation approach allied to the SCM in this study offers a robust mechanism to 
establish causal impact and to identify if, and to what extent, an investment has resulted in 
positive livelihood impacts and has overcome the typical challenges of establishing credible 
control groups. To this extent, it provides a more detailed and credible understanding of 
impact than is possible either through self-reported data or through existing modelling 
techniques.

The approach overcomes some of the typical evaluation challenges associated with 
infrastructure evaluations and offers a series of benefits in comparison to traditional 
evaluation alternatives (see Annex 6). By making use of recent advances in geospatial data 
and remote sensing, the approach outlined in this study is relatively low-cost and quick to 
implement, with fewer cost drivers than are associated with more traditional approaches 
(such as on-the-ground surveys). As the methodology continues to mature, the marginal time 
and cost to implement additional studies will continue to fall.

The approach is also flexible, scalable and replicable. In contrast to more traditional 
alternatives, it can readily be adapted and scaled to cover changing patterns of 
implementation. By making use of recorded satellite imagery and machine learning 
techniques to close data gaps in secondary datasets, the approach enables researchers 
to ‘go back in time’ and track changes in treatment and control groups before the start of 
implementation; this offers the key benefit that baseline data collection (a lack of which often 
undermines impact evaluations) is not required before the start of implementation.

The approach places little burden on investment owners and is not data-intensive to 
implement. Limited time and information are required on the part of investees beyond 
geotagged client data. Traditional alternatives require more engagement on the part of 
investment owners and investees, such as facilitating access to field sites to collect primary 
data.

The new approach is limited with regard to the extent to which the findings can explore the 
drivers of change at the household level and can be disaggregated to particular beneficiary 
groups. The approach is not able to answer all questions of interest on its own, such as 
exploring how and why connection to the grid drives livelihood changes at the household 
level. As noted in this report, some of these drivers of change can be inferred from other 
published complementary studies. The approach is also not able (as yet) to isolate impact for 
particular groups (such as different socioeconomic groups and women).
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The approach is most applicable in situations where there is a clear line of sight to end users, 
and it is more appropriate for localised investments; it is not applicable to all investments. 
In this study, a clear line of sight to end users was established through access to geotagged 
data on individual connections and time series data on electricity infrastructure installations. 
As currently designed, it is more challenging to implement the approach where specific 
end users are not known. As such, the approach is typically more appropriate to localised 
investments in sectors such as water and sanitation, power and manufacturing, etc., where 
investees are able to identify and collect geotagged data on service users/beneficiaries 
(ideally over a minimum period of five years post-investment). It is not appropriate for 
investments that have an impact at a systemic level and/or provide a public good. As such, 
it is not appropriate for all investments in the BII infrastructure portfolio, but it applies to a 
significant slice of investments (approximately 25%), where it is possible to identify end users.

Recommended next steps:

1.	 Continue to develop the approach presented in this study to be applicable to 
larger sections of the infrastructure portfolio. A useful next step is to expand on and 
test the approach in other subsectors in the infrastructure portfolio and in situations 
where information on end users is available only at a more aggregate level. This will 
enhance the applicability of the approach to a broader cross-section of the portfolio. 
For example, the evaluation team of Itad, Steward Redqueen and Atlas AI is currently 
adapting and testing the approach in the telecommunications subsector in a situation 
in which geotagged customer data is not available but where it is possible to identify 
treated locations more broadly with a high degree of confidence.

2.	 Identify investments that could/should collect geotagged and time series data 
on connections. BII should consider identifying relevant investments in the portfolio 
which could feasibly collect geotagged connection data on end users and infrastructure 
installations, and should support investment owners to do this and report it through 
the BII monitoring and evaluation system. This will increase the number and range of 
investments which can be evaluated effectively through this approach.

3.	 Roll out further studies in the investment portfolio to deepen the evidence 
base for current and future investments. BII and FCDO should consider rolling out 
additional studies in the infrastructure portfolio for a subset of investments where 
feasible (in particular, where geotagged data on end users is available and accounts 
for ‘time lags’ between treatment and the emergence of impact).50 Such a rolling 
programme would build up rigorous evidence of impact across the portfolio, as well as 
lessons on what works best and in which contexts.

50 In the case of electrification, the wider literature suggests a minimum time horizon of approximately four to five years, as  
        noted earlier in this report.
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Annex 2: Data accessed
Source Year(s) Variable Definition Format Use
Virunga 
Energies

Current Poles, cables, 
zones

Location of poles, 
cables and zones in 
Nord-Kivu

Vector shapefile Used to identify treatment communities.

Atlas AI 
datasets

2012–21 Per capita 
spending

Estimate of poverty 
($/person/day)

High-resolution rasters 
at 1km × 1km scale

Used to understand general characteristics of settlements in the 
treatment and donor pools, but not used in cosine similarity analysis or 
in developing synthetic controls (AWI is preferred as a superior measure).

Asset wealth Relative wealth of 
community (index)

High-resolution rasters 
at 2km × 2km scale

The dependent variable in the causal inference analysis and used in the 
cosine similarity analysis.

Population Population count 
(number)

High-resolution rasters 
at 1km × 1km scale

Used as a comparison to the WorldPop population dataset.

Electrification Status of 
electrification (yes/
no)

Used as a comparison to the High Resolution Electricity Access (HREA) 
electrification dataset.

Atlas of Human 
Settlements

All built-up areas 
(yes/no)

Vector shapefile Used to delineate settlements and represent each unit in the treatment 
or donor pool.

Demographic 
and Health 
Surveys (DHS)

2013/14 Occupation Percentage 
of population 
employed in various 
industries 

Country-wide survey 
data

Used to understand general characteristics of settlements but not used 
in cosine similarity analysis or in developing synthetic controls (not 
deemed to add additional value beyond selected variables).

WorldPop 2012–20 Population 
density 

Population density 
(people/km2)

High-resolution rasters 
at 100m × 100m scale

Used to understand general characteristics of settlements but not used 
in cosine similarity analysis or in developing synthetic controls (not 
deemed to add additional value beyond selected variables).

Population Population count 
(number)

High-resolution rasters 
at 10m × 10m scale

Used in the cosine similarity analysis.

University of 
Michigan HREA

2012–19 Electrification Probability of 
electrification 
(0–100)

High-resolution rasters 
at 10m × 10m scale

Used to subset the treatment group into previously electrified and not 
previously electrified.

OpenStreetMap 
(OSM)

Current Health facilities Location of health 
facilities

Vector shapefile Used to understand general characteristics of settlements but not used 
in cosine similarity analysis or in developing synthetic controls (not 
deemed to add additional value beyond selected variables).

School facilities Location of school 
facilities

Vector shapefile Used to understand general characteristics of settlements but not used 
in cosine similarity analysis or in developing synthetic controls (not 
deemed to add additional value beyond selected variables).

Roads Location of roads Vector shapefile Used in the cosine similarity analysis.
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Annex 3: SCM approach
A3.1 Different versions of the synthetic control approach
There are many versions of the SCM, which can be tailored to different implementation 
scenarios.

Version Description Useful in situations 
where… Implications for this study

Classical 
SCM

Designed primarily to 
estimate the effects 
of large aggregate 
interventions focused 
on a small number of 
large treatment units 
(typically one). Can, 
in theory, be applied 
to a larger number 
of treatment units 
through separate 
classical SCM for all 
treated units, but this 
has implications.

…there is one 
treatment unit of 
interest, with many 
potential donor units, 
and where data (for 
both dependent and 
independent variables) 
is available over a 
longer time horizon, for 
example an assessment 
of policy changes at a 
national level.

High degree of rigidity: donor unit 
weights must be non-negative; donor 
unit weights must sum to 1; values 
of the predictors for the treated unit 
should be near or inside the convex 
hull of the values for the donor pool.

Risk of masking underlying 
data heterogeneity if data is 
aggregated before analysis, or 
risk of overcomplicating analysis if 
individual classical SCM is performed 
for all treatment units.

Resource-intensive if separate SCM 
applied to all treated units.

SCM with 
elastic 
net

Similar to classical 
SCM, but with a more 
relaxed definition 
with a regularisation 
function to reduce 
overfitting,51 which has 
been used frequently 
in the literature.52 
Allows for aggregation 
at analysis stage rather 
than of the underlying 
data.

…there are multiple 
treatment units, and 
a balance is sought 
between applying a 
single classical SCM or 
running many individual 
classical SCMs in parallel 
for all treated units. 
Typical applications 
include assessments at 
regional or settlement 
level. More relevant in 
situations where data is 
available over shorter 
time horizons as a result 
of relaxations.53

More flexibility/less rigidity allows 
for more treatment units than years 
of treatment; donor weights can be 
negative; donor unit weights do not 
have to sum to 1.

Less susceptible to overfitting in 
situations where the data record is 
not extensive.

Offers a ‘middle ground’ between 
either applying a single classical SCM 
to all treatment units together, as the 
approach was initially intended (this 
leads to challenges in aggregating 
underlying data pre-analysis) or 
attempting to run separate classical 
SCMs for each treatment unit (this 
leads to challenges associated with 
the complexity of later analysis).

51 Based on the use of an elastic net drawing on a combination of LASSO and ridge penalties.
52 Ratledge, N. et al. (2021) ‘Using Satellite Imagery and Machine Learning to Estimate the Livelihood Impact of Electricity Access’. 
53 Nevertheless, a minimum of five years pre- and post-treatment is recommended.

https://www.nber.org/system/files/working_papers/w29237/w29237.pdf
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A3.2 The donor units and weights used to create synthetic controls 
for the previously unelectrified group
The synthetic control is composed of a weighted average of some settlements in the donor 
pool. Atlas AI first mask (i.e. only populated areas are considered as having any AWI), and 
then any calculations (such as average AWI) are weighted by the relevant population. As such, 
small settlements with big changes in values do not have a disproportionate impact.

In this approach, 10 settlements contributed to the synthetic control, with all units having a 
positive weight; however, the constraint ‘weights needed to sum to 1’ was relaxed. Although 
most of the units in the synthetic control have very low weights, two units contributed the 
most, and these are circled in red below. These units were selected by SCM because they 
most closely match the pre-treatment trend in the treatment pool.

Donor unit IDs and their weight

Donor unit ID Weight

467798 0.105948094

467804 0.005762979

468175 0.055643912

468611 0.023339608

505541 0.152024077

505564 0.047028516

505573 0.104956808

508008 0.033705409

508036 0.025975718

508188 0.096140378

Total Weight 0.650525499

 
A3.3 Implications of relaxing the constraints of the synthetic control 
method
The SCM constructs a synthetic control unit by combining weighted observed units in order 
to estimate the counterfactual outcome for a treated unit. One of the assumptions of the 
classical SCM is that the weights assigned to the observed units should sum to 1. We decided 
to relax this constraint in our analysis. We are aware of a few potential implications of doing 
this:

	` Bias in estimated treatment effect. The constraint that weights sum to 1 ensures 
that the synthetic control is a convex combination of the observed units. This convexity 
property is important for maintaining a balanced and unbiased estimate of the 
treatment effect. If the constraint is relaxed, it is possible that the synthetic control will 
become skewed towards certain units, leading to biased treatment effect estimates.

	` Model overfitting. Relaxing the weights sum constraint can lead to overfitting, where 
the synthetic control becomes too tailored to the pre-treatment outcomes of the treated 
unit.

Donor units in synthetic control (blue settlements) 
and previously unelectrified treatment pool (green 
settlements)

Note: The settlements with the highest weights are 
circled in red. Major roads are shown in orange to 
highlight similar connectivity.
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	` Loss of interpretability. The weights sum constraint enhances the interpretability of 
the synthetic control. When weights are required to sum to 1, each weight represents 
the proportion of the corresponding observed unit’s characteristics in the synthetic 
control. Without this constraint, it is possible that the resulting weights will not have clear 
interpretive value.

 
Although recognising these potential implications, we opted to relax the classical SCM 
requirement that weights should sum to 1. This is a recognised tactic when using our chosen 
analytical approach (SCM with elastic net). It offers more flexibility/less rigidity and is 
especially appropriate in cases where there is a relatively large number of treatment units but 
relatively few treatment years. We combined this approach with a regularisation function to 
reduce susceptibility to overfitting.
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Annex 4: Key definitions and derived metrics
Asset Wealth Index
Atlas AI’s asset wealth layer estimates household asset wealth based on asset ownership. 
This draws directly on household asset wealth data collected by USAID’s Demographic 
and Health Surveys (DHS) Program. The most recent DHS data for the DRC is available for 
2013/2014 and includes attributes such as: i) electricity connection; ii) small-scale appliances 
(radio, televisions, sewing machines etc.); iii) cooking source (electricity or fuel etc.); iv) type 
of owned transport (bicycles, cars, animals etc.); v) source of water (including piped or well 
etc); vi) type of sanitation; vii) type of household flooring (dirt, vinyl etc.); and viii) roofing and 
house construction materials.

Given that Atlas AI’s AWI inherently relies on the presence of electricity in its calculation 
(such as through the incorporation of satellite nightlight data and underlying USAID data 
on electricity connections) we developed a modified version by making adjustments to 
both input imagery and correlated field survey indicators, which strips out these potentially 
confounding aspects. This resulted in a slight reduction in the performance of the AI 
predictive model, but the impact was not significant. The finalised asset wealth layer was then 
attributed to settlement areas across Nod-Kivu for the years 2012–21.

Population and population density
Population and population density are measures of population count and population per 
km2. This variable will be used to assess how population and population density have been 
changing over time. The layer has been attributed to the settlement areas with data for the 
years 2012–21.

Road access, length and density
Road access is a derived indicator using road locations from OSM and Atlas AI settlement 
areas. This metric measures the Euclidean distance between each catchment area and the 
nearest major road, defined as primary, secondary or tertiary. The distance to the nearest 
roads provides a way to determine the accessibility of each settlement. Road length and 
density are similar metrics and provide a way to further describe settlements that contain 
roads. Road length is the total length of major roads within a settlement area; density is the 
total length of major roads divided by the settlement area. Of the 148,157 catchment areas, 
only 31,328 contained a major road. If a settlement area contains a higher density of major 
roads compared to another settlement area, this could indicate that the settlement is more 
connected.

A4.1 Asset Wealth Index interpretation
The AWI is an economic construct that estimates the accumulated wealth and well-being of 
a household, derived from an inventory of the valuable items purchased and collected over 
time, for example appliances, livestock, property and vehicles. The AWI is a valuable metric 
when income statistics, tax records or other evidence of monetary wealth are not available.

Although the AWI can be calculated household by household, a more robust statistical 
estimate is obtained by cluster households within a community or across small proximate 
communities. The interpretation of AWI is therefore the average indexed wealth per 
household in a community of interest. Furthermore, by comparing the non-dimensional 
index across space and time (spatial time series), we can draw insights about the changes in 
well-being within and across communities on average at the household level.
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The AWI has a 2km × 2km resolution. This resolution refers to the level of detail and 
granularity present in each pixel (or polygon) of the raster image. Resolution is typically 
measured in terms of the size of the smallest discernible unit on the ground, often 
represented in metres, feet or other units of distance. Therefore, a 2km × 2km pixel (or 
polygon) has one value for that entire area. We combined this raster with our settlement 
areas and calculated the average household AWI for each settlement area. Because we have 
an average of household-level AWI for each settlement, it would not be possible to pull out an 
individual household AWI. Using this dataset, it is only possible to perform a community-level 
impact assessment.

A4.2 Asset Wealth Index production
The asset wealth layer is produced from a deep learning model that predicts survey-based 
estimates from satellite imagery. To facilitate comparison within and across countries, we 
transformed asset wealth into a normalised index. To generate this data, we collate locally 
representative survey data on household asset ownership to create an AWI, which is the first 
principal component of a principal component analysis (PCA) computed on those assets over 
those households. We then train a random forest model to predict village-aggregated values 
with satellite imagery, validating on data the model was not trained on.

A4.3 Asset Wealth Index modification (excluding nightlights)
The creation of the AWI layer, excluding nighttime lights, is based on the methodology first 
defined by Jean et al. (2016), with two key modifications. In the original work, the goal was 
to predict an indicator of asset wealth over entire countries, using remote sensing data as 
the input features and labels based on known settlements appearing in the DHS. The two 
modifications we made for this were in particular to isolate the independent variable of 
electrification, and they are described in more detail by Ratledge et al. (2021). In their work, 
they were also seeking to assess the impact of electrification on household wealth.

The first change relates to how we define the dependent variable of asset wealth. In the 
original work this was defined by performing a PCA on a subset of questions asked in the DHS 
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surveys. However, those questions related to whether a household had access to electricity, 
and there was a concern that including this would embed our independent variable of 
interest in our dependent variable. Instead, we computed a new AWI, using PCA on a new 
set of variables not including electrification. It was noted that this new AWI had an extremely 
high correlation with the original AWI (r2 = 0.99), and so we are not meaningfully changing the 
notion of what household wealth is with this variation.

The second change was in the data bands used in the training of the Convolutional Neural 
Network. The original work by Jean et al. (2016) used both Landsat and the Visible Infrared 
Imaging Radiometer Suite (VIIRS). Landsat is a freely available satellite with six bands: the 
standard three red, green and blue (RGB) visual bands, one near-infrared band and two 
shortwave infrared bands. The bands have a native resolution of 30m per pixel. Conversely, 
VIIRS is a nighttime illumination dataset which records how bright 450m × 450m pixels are 
during a given night. The original work used an annual median of these as an extra input 
band into the model. In order to avoid issues with embedding the independent variable with 
a dependent variable, we decided not to introduce this into our model as the seventh band. 
Although this leads to a modest reduction in the predictive performance of the model, this 
is judged to be of secondary importance when compared to the greater risk of experimental 
integrity.
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Annex 5: Detailed comparison between donor pool and 
treatment settlements
For each settlement group, we calculated the mean and median population by gender across 
all settlements in each group. We also calculated the mean and median distance to a major 
road across all settlements in each group. A road distance of 0m would mean that a major 
road intersects the settlement and implies that settlement is easily accessible.

Median values by settlement area

​

Previously 
unelectrified 
treatment pool 
(Rutshuru)​

Previously 
electrified 
treatment pool 
(Rutshuru)​

Previously 
unelectrified 
donor pool​

Previously 
electrified 
donor pool​

Candidate 
pool​

Female 
population 
(count)

663 1,464 73 79 44

Male population 
(count) 577 1,276 63 68 39

Total population 
(count) 1,240 2,740 136 147 83

Distance to 
major roads 
(metres)

0 0 421 0 1,563

2012 AWI -1.181 -1.310 -1.136 -1.255 -1.077

2016 AWI -1.007 -1.084 -1.062 -1.037 -1.228

Mean values by settlement area

​
Previously 
unelectrified 
treatment pool 
(Rutshuru)​

Previously 
electrified 
treatment pool 
(Rutshuru)​

Previously 
unelectrified 
donor pool​

Previously 
electrified 
donor pool​

Candidate 
pool​

Female 
population 
(count)

4,668 6,298 7,019 1,469 299

Male population 
(count) 4,068 5,489 6,117 1,280 261

Total population 
(count) 8,736 11,787 13,136 2,749 560

Distance to major 
roads (metres) 4 65 623 1,664 3,505

2012 AWI -1.097 -1.155 -1.047 -1.230 -1.015

2016 AWI -0.851 -0.929 -0.908 -0.983 -1.157

The two tables show key metrics, such as female and male populations and distance to major 
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roads, for each group of settlements: (i) previously unelectrified treatment pool; (ii) previously 
electrified treatment pool; (iii) donor pools; (iv) overall candidate pool.

The cosine similarity analysis was used to select untreated settlements which share 
significant similarities with the treatment pool. Compared to the candidate pool, the donor 
pool is more similar to the treatment pool across all metrics. However, there are still some 
residual differences, and we also see that the donor pool has a high variance across all 
metrics, as shown by the large differences in median vs mean values. Nevertheless, despite 
the variance and level differences, we are still seeing more similarity between the donor pool 
and treatment pool compared to that between the candidate pool and treatment pool.

It should be noted that the SCM accounts for these differences between the treatment pool 
and donor pool to produce a closer fit when calculating the synthetic control units.



Evaluating the Impact of a Hydroelectric Power Investment in the Democratic Republic of the Congo

      44October 2024

Annex 6: Summary of comparisons to other approaches
Note we include randomised control trials (RCTs) here for reference purposes as the ‘gold standard’. In reality, RCTs are rarely feasible to apply 
to investment projects, given the requirement to randomise treatment.

Approach Cost Time required Data requirements
Engagement 
by investment 
owners

Flexibility Evidence standard

Randomised 
control trial 
(RCT)

High High High High Low Gold standard (but rarely feasible)

Costs will vary by 
scope.

Requires before and 
after data collection 
on the ground, 
with sufficient time 
intervals for impact 
to emerge.

Primary data typically 
required at household 
level, before and after.

Requires adaptation 
of implementation 
models to enable 
randomised 
treatment.

Typically, 
not possible 
to adapt or 
scale up after 
baseline data 
collected.

Requires randomised assignment 
of treatment and control units.

Quasi 
experimental 
designs (e.g. 
difference-in-
difference)

Medium 

(different from RCTs?)
High High Medium Medium Very strong (but limited flexibility).

Costs will vary by 
scope.

Requires before and 
after data collection 
on the ground 
with sufficient time 
intervals for impact 
to emerge.

Primary data typically 
required at household 
level, before and after.

Requires support to 
identify and access 
treated and untreated 
locations on the 
ground.

Allows for 
some flexibility 
in application 
post-baseline.

Flexibility is limited once baseline 
data is collected; there is risk of 
contamination of control units 
over time. Difficult to apply 
to investments with rapidly 
expanding customer base. Can 
be difficult to identify plausible 
counterfactual on the ground.

Geospatial 
analysis with 
synthetic 
controls

Low Low Low Low High Strong (and flexible).

Marginal cost will 
fall in subsequent 
applications and as 
approach matures.

Can be done quickly 
and retrospectively.

Requires access to 
secondary geospatial 
datasets and geotagged 
data on clients, but no 
other primary data.

Limited engagement 
needed beyond 
providing geotagged 
data on clients.

Can be scaled 
and repeated 
quickly; does 
not require a 
baseline.

Flexible – can offer a robust 
counterfactual even where difficult 
to identify physical control groups.
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