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Executive Summary 
Investment context and purpose 
This study examined the impact of broadband internet backbone fibre on household asset wealth 
and spending in the Democratic Republic of the Congo (DRC), focusing on the impact of British 
International Investment’s (BII) investment in Liquid Intelligent Technologies. It was undertaken 
as part of a broader evaluation of BII’s infrastructure portfolio by Itad and Steward Redqueen, 
designed to strengthen BII’s evidence base on the role of infrastructure investments in delivering 
economic and climate outcomes.  

Liquid Intelligent Technologies is a pan-African technology group present in 20 countries, mainly 
in sub-Saharan Africa (SSA). BII first made an equity investment of US$180 million in Liquid to 
accelerate the expansion of its fibre cables along the Cape–Cairo route and further into Central 
and Western Africa, with the objective of improving access to affordable and quality connectivity 
in Africa. In 2020, it was followed by a US$40 million equity investment to enhance Liquid’s data 
centre business.1 

This study explored how Liquid’s broadband internet fibre cable between Kinshasa and 
Lubumbashi – the SNEL line,2 which became operational in March 2021 – has resulted in 
increased household wealth and spending. Internet penetration in the DRC is among the lowest 
in the world and the internet speed and quality are poor. The fibre line will allow mobile network 
operators (MNOs) to offer customers faster and more reliable internet access and speed in 
regions close to the fibre line.  

The study had two purposes. First, it aimed to develop an evidence-based understanding of the 
impact generated as a result of faster and more reliable internet access resulting from 
communities connected to a Liquid Technologies fibre backbone. Second, it aimed to further 
develop and test a cost-effective, replicable and scalable approach to evaluation using satellite 
data and machine learning techniques, which BII can use in ongoing or future investments. 

Method 
The methodology underpinning this study aimed to quantify the impact of infrastructure 
investments in settlements that received fibre cable treatment against comparable ones that did 
not, using an innovative approach. Central to the analysis was the construction of robust 
datasets which combined high-resolution daytime and nighttime satellite imagery with survey 
data provided by AtlasAI. AtlasAI use advanced machine learning techniques to integrate these 
two types of data, allowing for a comprehensive and granular understanding of household asset 
wealth (as expressed by Atlas AI’s proprietary Asset Wealth Index (AWI), and household 
spending at a 1km x 1km scale. This fusion of satellite and survey data enabled the detection of 
subtle changes in living standards that might otherwise have gone unnoticed. 

 

 

1 The impact of Liquid’s data centres is the subject of another evaluation.  
2 The line is constructed along a power transmission line of Société Nationale d’Électricité.(SNEL) 

https://assets.bii.co.uk/wp-content/uploads/2024/12/02102216/How-does-access-to-a-local-data-centre-affect-business-productivity.pdf
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Once the datasets were established, the study applied the synthetic control method (SCM), a 
rigorous statistical approach used to estimate the causal effects of interventions when 
randomised experiments are not feasible. By creating a synthetic control group – a weighted 
combination of settlements that did not receive access to the fibre line – the analysis provided a 
counterfactual against which to compare the settlements that received fibre cable treatment. 
This allowed for the quantification of differences in asset wealth and spending attributable to the 
arrival of faster, more reliable internet.  

The results 
Liquid’s SNEL broadband fibre cable is providing an estimated 2.5 million internet users with 
access to faster and more reliable internet. 

For reasons of comparability with settlements that do not benefit from fast internet, this study 
focused on nine urban settlements in which MNOs can connect their networks to Liquid’s fibre 
cable. In these settlements, based on population statistics and World Bank and GSMA estimates 
of internet penetration among urban/rural and male/female populations in DRC, we estimated 
that 726,691 male and 465,200 female, i.e., 1,191,891 internet users, would potentially3 have 
access to faster and more reliable internet. The total number of users that benefit from the fibre 
line is likely twice as large, i.e. approximately 2.5 million. Moreover, these numbers will increase 
as internet penetration rates continue to go up and as more settlements along the SNEL line (or 
further away from it) are connected through network investments by MNOs.  

Although well below the US$4.20 lower-middle income threshold of the World Bank, the studied 
population live in urban areas and are wealthier than most of the DRC’s population  

In terms of average AWI, the households in the treatment areas are wealthier than 98% of the 
entire DRC population. Their average spending per capita in 2020 of US$3.38 (in 2021 PPP 
terms), although higher than 91% of the DRC’s population, was well below the US$4.20 and 
US$8.304 per day per capita that the World Bank defines as the lower-middle income and upper-
middle income thresholds, and close to the international poverty line of US$3.00.  

There is emerging evidence that households in the nine urban settlements studied have 
benefitted because of the fibre line.  

Almost four years after the arrival of faster internet, the households in these nine urban 
settlements experienced the following: 

• An increase in the average household asset wealth (as measured by AWI) has moved the 
treated settlements from the 98th to the 99th percentile settlements. This compares to the 
synthetic control settlements moving from the 97th to the 98th percentile.  

• US$1.25 PPP higher spending per capita in 2024, compared to an increase of US$0.30 for the 
synthetic control. In other words, the spending of households in settlements that were 

 

 

3 Whether or not existing internet users can benefit from faster internet does not only depend on their vicinity to Liquid’s fibre line 
but also whether the networks of MNOs and the handheld devices of the users allow for faster data transmission. 
4 These thresholds are in terms of 2021 PPP spending. In terms of 2017 PPP spending, they correspond to US$3.65 and US$6.85. 
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connected to the fibre line increased by US$0.95 per capita per day more compared to 
households in settlements that were not. This has moved the treated settlements from the 
91st to the 97th percentile for spending set against the distribution of all households in the 
region, compared to the synthetic control, which moved from the 89th to the 94th percentile.  

These results, however encouraging, are not sufficiently robust yet to claim strong causal 
inference.  

There is a 32% probability that the observed AWI results could have arisen by chance, which is 
well above the usual 5% considered as statistically significant. Although the spending results 
have greater statistical significance, at 7% in 2024, the higher confidence should be interpreted 
with caution. Since spending is partially derived from AWI, the additional assumptions and 
propagating errors within it make it a less stable dataset than AWI. Consequently, the true 
reliability of these findings may be overstated.  

Care must be observed to infer causality.  

The SNEL line covers a very large area and unobserved confounding factors in the pre-
treatment period and idiosyncratic post-treatment shocks can introduce sources of bias. The fact 
that the first years after the fibre line became operational coincided with the Covid 19 pandemic 
and the recovery from it is an example of this.  Any regional differences in the severity or 
recovery speed could have affected the findings. 

Recommendations 
1. Based on the emerging evidence collected in this study, BII should consider other 

broadband investments in underserved regions. Because of its size, inaccessibility and 
limited economic development, the DRC is among the most underserved countries in 
terms of backbone fibre. Although globally the largest gaps in backbone infrastructure 
are being filled, there are still regions where backbone internet investments are much 
needed. Within the DRC, the completion of the Kananga – Goma line is recommended. 
Some examples other than DRC are Ethiopia and South Sudan.  

2. We recommend that BII continues to invest in the ‘last mile’ through which people access 
the internet. The presence of broadband fibre is necessary but not sufficient to increase 
internet quality and penetration. Last mile investments in internet connectivity involve 
MNOs through the (co)hosting of towers and higher bandwidth mobile antennas. They 
also involve financing internet-capable handsets, which the Global System for Mobile 
Communications Association (GSMA) now considers the single greatest barrier keeping 
people offline.   

3. If possible, pursue opportunities to ground-truth the findings for this investment and to 
understand the drivers of change at a household level. BII can seek opportunities to 
ground-truth the findings of this study by comparing the results to evidence collected 
through other methods, including primary (survey) data. This could involve estimating 
(with MNOs that use the fibre line) how internet penetration and usage have developed in 
the regions along the line, as well as how business growth and productivity have changed 
in these areas. While broadband fibre forms the essential backbone for internet 
connectivity, it alone does not guarantee increased usage or penetration, and a ground-
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truthing study should also examine other elements along the evidence chain to provide a 
more comprehensive understanding. 

4. Repeat the analysis in two years to increase the statistical robustness of the emerging
impact and its durability and include more settlements that were connected after 2021

a. When the impact is durable over a longer post-treatment window, the cumulative
gap between treated units and the synthetic control should become more
pronounced. Statistical confidence also increases as random (placebo) effects
dissipate over time.

b. More settlements have obtained fibre access points after 2021, both along the
SNEL line as well as the Kananga–Goma line, if fully completed (see
recommendation 1). Inclusion of these settlements could also strengthen the
robustness of the study. An important requirement, based on the results in this
study, is that four years of post-treatment data should be available. Including
settlements that were connected from 2022 onwards would also mitigate the
possible impact of any regional heterogeneity resulting from the intensity of and
the recovery from the Covid 19 pandemic.
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1. Introduction
In 2019, the Foreign, Commonwealth & Development Office (FCDO) commissioned Itad and 
Steward Redqueen to independently evaluate British International Investment’s (BII’s) 
infrastructure portfolio. The purpose of this evaluation was to better understand the 
development outcomes and impacts associated with BII’s investments in the infrastructure 
sector. The assignment consisted of two phases: an evidence and portfolio-level review (Phase 
1), published in 2022, and a subsequent series of in-depth case studies (Phase 2). 

This study had two purposes. First, it aimed to develop an evidence-based understanding of the 
impact generated because of new or improved access to broadband Internet through BII’s 
investment in Liquid Technologies. Second, it aimed to further develop and test a cost-effective, 
replicable and scalable approach to evaluation, using satellite data and machine learning 
techniques, which BII can use in ongoing or future investments. Itad and Steward Redqueen have 
been working together with AtlasAI to develop this approach, which was used first in the impact 
assessment of Virunga Energies (Itad, 2024). The report is structured as follows: 

Section 2: Study context. This provides the background to the study and the link to the previous 
phase of our evaluation work, in which we systematically identified areas of BII’s infrastructure 
portfolio that could benefit from more in-depth evidence. This section also discusses what the 
study is trying to achieve, emphasising its strong learning focus, with the aims of (i) helping BII 
understand where it is generating impact in its infrastructure portfolio and (ii) demonstrating a 
new, cost-effective, flexible and replicable approach to impact evaluation. It provides an 
overview of the challenges associated with assessing the impact of infrastructure investments 
and the study design adopted for addressing these challenges. 

In Section 3: Evaluation approach and concepts. This discusses how the study defines impact, 
focusing on household asset wealth and spending and how these measures have been adapted to 
assess the impact of infrastructure investments on underserved urban communities for the 
purpose of this study. 

Section 4: Evaluation methodology. This provides a step-by-step description of how the study 
was implemented in practice. This includes a discussion of the data used, the identification and 
selection process for the settlements to include in the analysis, and how the geospatial impact 
evaluation approach, with the synthetic control method (SCM), has been defined and used to 
isolate impact. 

In Section 5: Key findings. This discusses the asset wealth and spending results study, focusing 
on the development impact of the investment by applying the geospatial impact evaluation 
approach; how the robustness of the results was tested; how the results compare to each other; 
and what has been learned about applying the approach in comparison to alternatives. 

Section 6: Conclusions and Recommendations. This discusses the key takeaways from the study 
and proposes a set of recommendations and next steps for BII and FCDO, based on the study’s 
findings and the lessons learned from applying the new approach. 
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2. Study context 
This section outlines the overall purpose of the study and how it fits with the wider evaluation of 
the BII infrastructure portfolio. It also includes a discussion of the rationale for the focus on 
broadband investments and their strategic importance to BII. This is followed by an overview of 
the investment studied – Liquid Intelligent Technologies – in which BII invested US$180 million in 
2018 and another US$40 million in 2020. Liquid is the largest independent fibre and cloud 
services provider in Africa. In this report, the focus is on Liquid’s backbone fibre investments in 
the Democratic Republic of the Congo (DRC).  

2.1. Purpose 
This study had the following two primary aims: 

• First, it sought to develop an evidence-based understanding of the impact generated as a 
result of BII’s investment in Liquid, specifically its backbone fibre line in the DRC. This is 
linked to the wider goals of Itad and Steward Redqueen’s evaluation, which sought to 
deepen BII’s evidence base on the impact it is generating through infrastructure 
investments.  

• Second, it aimed to further develop a low-cost, flexible and scalable approach to SCM, 
which can be replicated by BII to evaluate the impact of localised infrastructure 
investments, using satellite data and machine learning techniques allied to recent thinking 
in the use of synthetic control analysis. The approach was used before to analyse the 
impact of electrification in the DRC. 

The study focused on three areas of BII’s impact framework for the Information and 
Communication Technology (ICT) sector: i) additional capacity (for data transport); ii) improved 
quality and reliability of Internet access; and iii) (ultimately) an improved standard of living. 
Phase 1 of the evaluation reviewed global evidence against the infrastructure sector’s impact 
framework. In Figure 1, the evidence base presented in the Phase 1 Evaluation Report5 is 
illustrated against the BII impact framework. Phase 1 found limited or weak evidence linking 
broadband investments to most impact pathways, outcomes and ultimate impacts, with two 
exceptions: greater productivity of companies and greater economic opportunity. The most 
tangible evidence, based on two studies,6 is that a doubling of the average Internet speed is 
associated with a 0.3% increase in the Gross Domestic Product (GDP) in OECD countries.7 A third 
study8 concluded that fast Internet infrastructure may have the greatest employment-creating 
potential in Africa, through new firm entries and increasing productivity. There was limited 
evidence of the impact of broadband on standards of living and this study aimed to fill that gap. 

This study, therefore, aimed to deepen the evidence base around the three links highlighted in 
solid blue in Figure 1, building further evidence on the impact of improved Internet access on 

 

 

 
6 Koutroumpis, P. (2019) The economic impact of broadband: Evidence from OECD countries. Technological Forecasting and Social 
Change 148(119719); Regeneris (2018) The Economic Impact of Full Fibre Infrastructure in 100 UK Towns and Cities. 
7 OECD: Organisation for Economic Co-operation and Development. 
8 Hjort, J. and Poulsen, J. (2019) The Arrival of Fast Internet and Employment in Africa. American Economic Review 109(3): 1032-
1079. 
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standards of living. As explained in Section 3, asset wealth is used as a proxy for improved living 
standards, as captured in the Asset Wealth Index (AWI) developed by AtlasAI. By using some 
additional survey data, the AtlasAI-generated AWI maps can be translated in estimations of 
household spending per capita, in purchasing power parity terms.  

Figure 1. BII impact framework for the infrastructure sector, with strength of evidence from Phase 1 

 

The study also offered an opportunity to ‘extend the toolkit’ of impact assessment options 
available to BII, given that much of the current evidence of impact across the portfolio is reliant 
on modelling techniques (using methodologies such as the Joint Impact Model)9 and on self-
reporting by investees. This study went further by assessing observational data on impact but 
aimed to do so in a way that was appropriate and feasible for BII to replicate. To a large extent, 
the methodology deployed in this study replicated the impact study for Virunga Energies on the 
impact of mini-grid access to electricity in rural areas.10 

Because of data limitations, this study was not able to cover the non-marked elements of the 
sector framework. For example, increased access and greater productivity could not be directly 
observed, because Liquid has no line of sight to the end customer. Improved affordability, which 
was emphasised in the Development Impact (DI) thesis for the investment, could not be observed 
directly either; however, lower prices directly due to a local backbone fibre line were unlikely 

 

 

9 https://www.jointimpactmodel.org/ 
10 Itad, Evaluating the impact of a hydroelectric power investment in the Democratic Republic of the Congo, BII, 2024 
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because of the national pricing strategies of mobile network operators (MNO).11 As shown in 
Table 1 (on page 6), the general affordability of mobile internet (usage and devices) in all of the 
DRC improved from 2020 to 2022 but decreased thereafter. It was impossible (with the chosen 
methodology for this study) to identify a causal link with the Société Nationale d’Électricité 
(SNEL) line. By looking at the AWI and average household spending, this study amalgamated 
several of the pathways and outcomes through which the presence of a fibre backbone impacts 
standards of living. 

2.2. Strategic importance and relevance to BII 
This study was undertaken as part of the wider evaluation of BII’s infrastructure portfolio. It 
followed the Phase 1 evaluation, conducted by Itad and Steward Redqueen, which reviewed BII’s 
infrastructure portfolio. The Phase 1 evaluation identified a long list of 13 evidence opportunities, 
where the existing evidence of impact in the infrastructure sector was weak and where it was 
feasible that BII could deepen its evidence base. One of these was “the impact of broadband 
backbone investments on service delivery and onward linkages to customers reached and 
increased access”. 

Extending the evidence base on the impact of broadband backbone is of strategic importance, 
given the urgent need for new investments to increase Internet penetration across Africa. 
According to the World Bank, in sub-Saharan Africa (SSA), only 36% of the population were 
connected to the Internet in 2024, compared to 52% in South Asia, the next least-connected 
region. Although only 13% (167 million people) of the people in Africa live in a zone where there 
is no mobile broadband Internet, 60% of the people who live in connected zones do not use 
mobile Internet services (a so-called usage gap of 770 million people).12 

Extending the evidence base on impact for internet backbone investments is relevant to BII given 
that the data compiled for the 2012–2024 Portfolio Review indicated that ICT investments make 
up approximately 19% of BII’s investment in infrastructure, 21% of which is in broadband 
backbone fibre and data centres. This is mostly through its investment in Liquid Technologies. 
Backbone infrastructure is necessary but not sufficient for increasing access to affordable, high-
quality and reliable Internet access. MNOs are needed to provide the wired and wireless internet 
access that is carried by backbone providers such as Liquid 

Background on Liquid Technologies 
The investment selected for study was BII’s investment in Liquid Technologies. In 2018, BII made 
a US$180 million equity investment in Liquid Technologies to accelerate its expansion along the 
Cape–Cairo route and further into Central and Western Africa, with the objective of improving 
access to affordable and quality connectivity in Africa. In 2020, BII made a follow-on US$40 
million investment to support Liquid’s data centre expansion.13 The long-term aim of BII’s 
investment was to improve access to affordable and quality internet.  

 

 

11 It may be that, in the much longer run, the fibre line attracts more price competition between and new entry of MNOs. According to 
2024 GSMA data, in only three countries is internet less affordable than in DRC: South Sudan, Burundi and Zimbabwe. 
12 GSMA (2023) The State of Mobile Internet Connectivity 2023. 
13 The impact of Liquid data centres and cloud services is covered in a separate BII report. 
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The focus of this report is on fibre backbone for broadband Internet in the DRC. The SNEL line 
(see Figure 2) is a 2,500 km fibre line connecting Kinshasa and Lubumbashi; it became 
operational in March 2021. The Kananga – Goma line (in green dashed) was completed in an 
initial phase but is not yet fully operational or secure. After landslide damage, repair works on a 
150km stretch in South Kivu could not be completed due to heavy rains and civil unrest, and 
across 580km of the fibre line, ongoing military and rebel activities prevent maintenance and 
completion works. Although the Mbuji-Mayi node on the Kananga–Goma line went live in May 
2021, the incomplete status of the line limits the extent to which large technology companies 
(Google, Meta, Microsoft) can provide their data-dependent digital platform services to the 
market. Apart from a reduced uptake of modern work practices such as Microsoft Teams and 
Google workspace, this also reduces data consumption and revenues for MNOs and through that 
their ability to invest in ‘last-mile’ connectivity.  

The lines are open access, which increases competition between providers, which was expected 
to increase broadband penetration and better-quality access for end users. Broadband access is 
essentially internet access with much faster data transfer rates, allowing for streaming and 
modern work services for one or multiple users. Along the fibre lines, MNOs can add or drop 
traffic using so-called add/drop multiplexers14 (ADMs). Liquid has no line of sight to the end 
customer, nor can it track the data volumes transported on its fibre lines. 

Figure 2. Different fibre lines of Liquid Telecom in the DRC 

 
Key: red — SNEL line; green — Kananga–Goma line; dotted line — under construction. 

 

 

14 A multiplexer combines several lower bandwidth streams of data into a single beam of light. An ADM has the additional capability 
to add lower bandwith signals or to extract (drop) them and remove them from the stream. 
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The Liquid fibre lines connect the four largest cities in the DRC. The SNEL line covers 2,500 km 
and connects three of the four largest cities in the DRC (Kinshasa, Kananga and Lubumbashi). It 
runs parallel to the SNEL electricity transmission line. The partially completed line to Goma also 
connects the third-largest city, Mbuji-Mayi. The line goes through many urban and rural areas 
between these cities. The extent to which these areas gain access to better-quality Internet 
depends on the presence of ADMs. As will be shown later, most ADMs are in towns along the 
line. 

Internet penetration in the DRC is low. According to the World Bank’s 2023 data, Internet 
penetration stood at 31% of the population, up from 16% in 2019. With a population of 
109.3 million people in 2024, the World Bank figures indicate that approximately 34 million 
people have Internet access.  

Mobile connectivity in the DRC is still underdeveloped. Internet access in the DRC is almost 
entirely through mobile networks. According to the Global System for Mobile Communications 
Association (GSMA),15 the DRC has one of the highest coverage gaps: In 2024, 32% of the 
population did not have access to mobile broadband networks (i.e., 3G or better). However, this 
was down from 46% in the years prior. As shown in Table 1, the Mobile Connectivity Index in the 
DRC is rising, largely because of improved affordability and better content and despite only a 
slightly improved score on infrastructure. Network performance (an amalgamation of download 
and upload speeds and latency) across the DRC hardly changed in the first four years since the 
SNEL line became operational in 2021, however, it improved substantially in 2024. The initial lack 
of improvement was likely due to other factors constraining the speed and reliability of the 
entire chain. For example, MNOs must upgrade their equipment (e.g., antennas and tower 
density) to accommodate higher speeds and there can be bottlenecks in how the DRC’s backbone 
network connects to other countries or the fibre line around Africa (see, for example, the Google 
Equiano line, shown in black in Figure 2). 

Table 1. GSMA indicators of the Mobile Connectivity Index and some of the underlying indicators16 

 2020 2021 2022 2023 2024 

Mobile Connectivity Index 21.6 22.5 24.5 25.2 28.2 

 

Enablers 

Infrastructure index 48.1 41.0 40.3 42.2 50.4 

Affordability index 10.4 13.6 19.6 17.5 17.0 

Consumer readiness index 29.6 29.9 27.8 33.2 28.4 

Content and services index 14.6 15.4 16.4 16.5 26.2 

Coverage & Performance 

Network coverage of 
population Index 

53.4 45.9 45.9 46.3 57.7 

 

 

15 GSMA (2024) The State of Mobile Internet Connectivity 2024; mobile connectivity data. 
16 https://www.mobileconnectivityindex.com/index.html. Index ranges from 0-100. The only countries with a lower overall score than 
DRC are South Sudan, Central African Republic, Burundi, Niger, Afghanistan and Chad (in increasing order). 

https://www.mobileconnectivityindex.com/index.html
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Network performance index 30.1 27.3 25.6 30.0 35.6 
 

This study aimed to answer the following research questions: 

1. How has fibre broadband access developed geographically over time following BII’s 
investment in Liquid? 

2. What is the socioeconomic profile of the communities that have been reached by new 
connections? 

3. How have communities that have been connected to new fibre broadband infrastructure 
developed over time? 

4. Is there evidence that connected communities have demonstrated increased growth rates 
in their average household wealth and spending relative to non-connected communities? 

This study was performed in 2025 using the most recent AWI data available (from 2024). This 
means that, at the time, the SNEL line had been operational for three years and nine months. 
Some of the of pathways in Figure 1 may take a long time to be fully activated. For example, 
MNOs need to connect their existing and new infrastructure to the ADMs; companies need to 
adapt to faster Internet and grow their business and/or increase their productivity in response; 
new firms need to enter; new employees must be hired and/or salaries need to adjust; and these 
changes, subsequently, need to feed through to changes in standards of living, which can be 
inferred from satellite observations. Based on Hjort and Poulson’s study,17 we estimate that it 
takes roughly two years after the arrival of fast Internet before changes in night light intensity 
can be observed, and it likely takes more than double that time before economies have fully 
adjusted. Based on this estimate, the three years and nine months since the SNEL line became 
operational should be long enough to discern impacts. 

This report is similar in approach to the previously mentioned study on Virunga Energies, with 
one important difference: the identification of treatment areas. In the Virunga study, the 
treatment areas could be defined exactly because connections to the mini-grid were known at a 
household level. In this study, such a clear definition was not possible because customers’ access 
to the faster internet enabled by Liquid’s fibre line is wireless, through MNOs. Instead, we chose 
to focus on urban areas where the fibre cable and, thus, more reliable and faster internet have 
arrived. The identified control areas were comparable in every aspect except for the arrival of 
broadband fibre.   

 

 

17 Hjort, J. and Poulsen, J. (2019) The Arrival of Fast Internet and Employment in Africa. American Economic Review 109(3): 1032-
1079. 
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3. Evaluation approach and concepts 
This section highlights the research challenges typically associated with evaluating 
infrastructure projects (time, cost and methodology) and describes the research solution, which 
considered recent advances in synthetic control impact evaluation design and combined these 
with artificial intelligence (AI)-derived geospatial data to develop a low-cost and scalable 
geospatial impact assessment approach, which BII can use in future studies. This section also 
discusses how the study defined impact, focusing on household asset wealth and spending and 
how and why this measure was adopted for the purposes of this study, as well as the approach 
to utilising AtlasAI’s AWI and the derived household spending as proxies for livelihood 
improvements. Finally, this section outlines some of the limitations of the study. 

3.1. The research challenges 
Evaluating infrastructure impacts is difficult and tends to be expensive and time-consuming. This 
study was designed to offer a lower-cost, more flexible approach to meeting these challenges. 
Challenges in evaluating infrastructure projects include the following: i) non-randomisation; ii) 
controlling differences between control and treatment groups; iii) incomplete datasets; and iv) 
the high costs associated with evaluating infrastructure impacts.  

First, new infrastructure is not randomised in delivery, therefore, it is difficult to identify 
adequate counterfactuals. This can be resource-intensive and can be difficult to achieve when 
dealing with large and diverse treatment areas. Although the issue of non-randomisation cannot 
be eliminated entirely, in this study we exploited the fact that smaller towns along the SNEL line 
were connected accidentally rather than intentionally, because they happened to be very close 
to the fibre line and because of the low marginal cost of adding an ADM.18 A further complication 
was that the accidentally connected towns would have had internet access before through 
mobile 2G or 3G networks; although this does not allow for meaningful or productive use, it 
makes the arrival of faster and more reliable internet less of a change.  

Second, the recipients of the infrastructure may be different from the surrounding, untargeted 
populations (e.g., they may have higher underlying rates of economic growth), which 
complicated the use of more traditional evaluation designs, such as difference-in-difference.  

Third, national surveys of living standards typically do not revisit the same households or 
locations across survey waves, or they are repeated infrequently, making it difficult to construct 
repeated local-level measurements using secondary datasets. This was true for the available 
DRC datasets. Fourth, traditional impact evaluation designs, which seek to close gaps in existing 
datasets through on-the-ground surveys, tend to be time-consuming and expensive to 
administer. This is particularly true for the DRC, where challenges in access further complicate 
and increase the cost of large-scale survey work. 

 

 

 

18 Of course, this does not eliminate the fact that the location of the SNEL line is not entirely random. For example, it runs parallel to 
the SNEL electricity transmission line, which may be associated with non-random effects, such as better or more reliable electricity 
access. 
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3.2. The study approach 
The approach developed through this study to address the challenge of evaluating 
telecommunications investments was to combine recent advancements in synthetic control 
impact evaluation design with the latest developments in AI-derived geospatial datasets. The 
SCM is a particularly useful approach for measuring impact where it is difficult to identify real-
life, on-the-ground counterfactuals (or real-life control groups) that share sufficient similarities 
with the treatment group and are not impacted by the project over time (i.e., they become 
contaminated). Both challenges were present in this evaluation. The SCM differs from traditional 
(difference-in-difference) impact evaluation approaches in that it does not attempt to identify 
real-life control units on the ground or track their progress over time. Rather, it is based on a 
series of simulated control units, which are developed to best mimic the behaviour of the treated 
units in the years pre-treatment.19 

The synthetic controls act as the (unobservable) counterfactual of what would have happened 
without the intervention. To date, they have typically been used in the evaluation of large policy 
decisions, which affect large treatment units.20 They have not yet been used as frequently in 
other areas, such as the evaluation of infrastructure projects. In this study, the approach was 
tailored to be more relevant to the identification of impact in multiple treatment units, in a more 
localised investment. Because they were simulated, a further advantage of the method was that 
it could be tailored to the purposes of the study.21 

Figure 3. Illustration of treatment effect (not based on actual data) 

 

 

 

19 These are developed as the weighted average of non-treated units across a series of predetermined metrics. 
20 A good example is the impact evaluation of the introduction of the California Tobacco Control Program. Abadie, A. et al. (2010) 
Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program. Journal of 
the American Statistical Association 105(490): 493–505. 
21 For example, confounding variables, which might influence the results of the study, can be stripped out during construction. 
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In this study, synthetic control analysis was used to isolate the net impact (as captured by 
settlements’ changing asset wealth) of having access to the newly constructed backbone fibre 
line. The process of implementing the synthetic control approach is described in detail in Section 
4. As illustrated in Figure 3, synthetic control units were developed to closely match the 
behaviour of the settlements that have been connected to the fibre line (our treatment 
settlements) in the period before they were connected (the time of treatment). We then used a 
statistical analysis to identify differences in the behaviour of the treated units and synthetic 
control units in the period after the time of treatment. This is the ‘treatment effect’ of the 
intervention. SCM was earlier applied to BII’s Virunga Energies investment. The main difference 
with that study was that, here, we needed to identify treatment areas without data on who the 
customers were and where they were located. In other words, treatment areas in this study were 
more akin to catchment areas, based on proximity to ADMs that connect to the fibre backbone. 

The data used in the geospatial impact evaluation design was fed through a machine learning 
model developed by AtlasAI to address any issues arising from missing or incomplete data. 
AtlasAI’s large-scale proprietary datasets make use of daytime and nighttime satellite imagery, 
in combination with publicly available data and machine learning techniques, to develop 
comprehensive datasets covering key livelihood indicators. This technique closes gaps in the 
time series records of publicly available datasets and offers opportunities to customise 
indicators to better capture the impact of particular investments. This approach is, in part, 
inspired by recent work undertaken by Ratledge et al. (2022)22 at the University of Stanford, 
which used similar datasets to estimate the impact of electricity grid access improvements on 
the rate of growth in village-level assets. This study built on learning from this work, which 
demonstrated how recent advancements in machine learning and satellite imagery can help 
ameliorate data gaps from traditional wealth indices, such as those from the Demographic and 
Health Surveys (DHS) Programme23. The process followed by AtlasAI to build its AWI and 
spending dataset from the available secondary data is outlined in Section 3.3 and Annex 4, 
including the steps taken to test and evaluate the accuracy of the model. 

The use of geospatial data in the evaluation of investment projects is still in its infancy. This 
study, therefore, seeks to further ‘expand the envelope’ in terms of the methodological tools and 
data sources available to investors in this space. The approach holds a series of advantages for 
BII and other investors, including that the following: i) it relies primarily on remote sensing 
rather than on-the-ground data collection; ii) it does not place a significant burden on investees 
(in terms of either data or time to engage) – the primary data requested of Liquid is geotagged 
data on their installed infrastructure (e.g., the fibre line route and installed ADMs); and iii) it does 
not require the collection of baseline data but instead makes use of established geospatial 
records to enable researchers to ‘go back in time’ before the investment was made, which makes 
the approach much more flexible than traditional evaluation alternatives. However, the method 
currently has limitations, for example, with regard to the extent to which the impacts identified in 

 

 

22 Ratledge, N. et al. (2022) Using Machine Learning to Assess the Livelihood Impact of Electricity Access. Nature 611: 491–495. 
https://rdcu.be/cZOHV 
23 Funded by USAID, the future of the DHS Program is uncertain. International organizations, national governments and private 
organization may step in to fund data collection or provide an alternative program. Country surveys were conducted approximately 
once every five years 

https://rdcu.be/cZOHV
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secondary datasets can be disaggregated to the household level or by gender. However, here, 
we can look to other studies to understand further how impact is generated. 

The solution developed in this study was designed to be replicable, scalable and cost-effective 
and, therefore, to offer an alternative to traditional impact assessment approaches, which are 
time-consuming and expensive to implement. The solution was intended to be particularly 
applicable to data-sparse and fragile contexts, where traditional approaches may not be 
feasible. This study has produced learnings for BII on how and in what circumstances it can 
replicate this study and apply similar methods to measure impact across its portfolio. As 
previously mentioned, the application here to ICT investments builds on an earlier application of 
the methodology for BII’s investment in the Virunga mini-grid24 which was peer-reviewed. An 
extension relative to that study is that the AWI results are translated into spending (in 
purchasing power parity) and, thereby, directly connect to BII’s impact framework. 

3.3. Our definition of impact – asset wealth 
This study used AtlasAI’s AWI to capture changes in standard of living as a result of living in an 
area with better and more reliable Internet access. Asset wealth was selected as a robust proxy 
for living standards in this study because it is based on multiple dimensions of wealth and is 
considered to be a more reliable measure of households’ longer-term economic well-being than 
alternative monetary measures, such as spending. AtlasAI’s AWI is based on data sourced from 
the many georeferenced, nationally representative surveys conducted in SSA, which collect data 
on asset wealth. A principal data source was the United States Agency for International 
Development’s (USAID’s) DHS. These data have been collected through representative household 
surveys for 30 years. Through these surveys, USAID calculates a household wealth index. A key 
advantage of this index is that it is less susceptible to errors in data collection than alternatives, 
given that many of the enumerated assets are directly observable to surveyors. The 
methodology AtlasAI used to construct the AWI is aligned to that used by USAID to construct the 
wealth index. It is calculated based on a household’s ownership of selected assets, including 
televisions and bicycles, materials used for housing construction, and types of water access and 
sanitation facilities. Annex 4 provides additional detail on the assets included in the construction 
of the AWI. Figure 4 visualises AWI value across the DRC in two different years, with each pixel 
representing a 1 km x 1 km polygon. Kinshasa in the western part and the Lubumbashi (and 
nearby mining areas) in the southeast can be seen more clearly in 2021 than in 2012. 

 

 

24 British International Investment (2024) How does access to green energy transform rural communities? Insights from Virunga 
Energies. Available at: https://www.bii.co.uk/en/news-insight/insight/articles/how-does-access-to-green-energy-transform-rural-
communities-insights-from-virunga-energies/?fl=true  

https://www.bii.co.uk/en/news-insight/insight/articles/how-does-access-to-green-energy-transform-rural-communities-insights-from-virunga-energies/?fl=true
https://www.bii.co.uk/en/news-insight/insight/articles/how-does-access-to-green-energy-transform-rural-communities-insights-from-virunga-energies/?fl=true
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Figure 4. Visualisation of AWI in 2012 and 2021. Lighter colours indicate higher AWI values. 

 

In developing the AWI, AtlasAI used an AI model trained on satellite imagery to close data gaps 
in the secondary data record. Historically, a key challenge in using secondary datasets to 
measure the impact of investments is that they are updated infrequently and there are often 
gaps in the data record, especially in conflict-affected countries. The process developed by 
AtlasAI combines available secondary data on asset wealth with publicly available daytime and 
nighttime satellite imagery25 to overcome this challenge. An AI model, based on a convolutional 
neural network (CNN), was trained to make predictions on asset wealth, drawing associations 
between satellite imagery and underlying secondary data on asset wealth.26 The model’s 
accuracy was tested against multiple datasets. In doing so, AtlasAI could use publicly available 
satellite data to close data gaps in the secondary data on asset wealth. The version of AtlasAI’s 
AWI dataset27 used in this study provided annual estimates of asset wealth for the period 2012–
2024, at a resolution of 1 km x 1 km polygons. For more information on the AWI please refer to 
Annex A4.2. 

3.4. Translating AWI to Spending 
AtlasAI’s AWI can be translated into household spending (in purchasing power parity, per capita). 
Spending provides an important bridge between a multidimensional measure of living standards 
and a more familiar, interpretable economic indicator. AWI captures a broad spectrum of 
household well-being, such as asset ownership, housing quality and access to essential services. 
Because AWI is grounded in more direct and observable data points and less on self-reported 
monetary measures, it is particularly well- suited for analysing differences between populations 
and over time. But its composite nature can make direct interpretation challenging, especially 
when comparing to standard benchmarks. By converting AWI values to an estimated household 
spending figure, the results become more readily comparable with widely used standards, such 

 

 

25 ‘Earth Observation’ datasets drawn from publicly available satellite image sources, with coverage over the last 25 years, including 
multispectral Landsat bands over multiple generations and satellite imagery of nighttime lights. 
26 The approach to training the AI model using publicly available satellite imagery is discussed by Yeh, C. et al. (2020) Using publicly 
available satellite imagery and deep learning to understand economic well-being in Africa. Nature Communications 11(1): 2583. 
27 AWI is currently available for SSA and Southeast Asia. 

2012 2021
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as those employed within BII’s impact framework, facilitating the easier communication of 
findings and alignment with established evaluation practices.  

AtlasAI derived its spending layer by first using the same georeferenced household survey data 
and satellite imagery employed in the AWI to estimate asset wealth and then supplementing 
these sources with additional survey data that directly measure household expenditure. By 
establishing statistical relationships between asset ownership patterns and reported spending 
from these surveys, AtlasAI was able to translate AWI values into estimates of household 
spending in purchasing power parity terms.28 

The relationship between AWI and household spending varies per country and per year, as is 
shown in Figure 5. While spending monotonically increases, it does so in a highly non-linear 
fashion. Below AWI values of -0.5 (spending US$1 PPP), changes in AWI cannot be meaningfully 
translated into changes in spending, whereas AWI values above 1.25 (spending US$6 PPP), small 
changes in AWI correlate with very large changes in spending. High AWI values are frequently 
observed in urban centres, where households have typically accumulated a significant array of 
assets and income increases do not necessarily translate into substantial rises in AWI, as 
households already possess most of the assets included in the index. As a result, additional 
assets acquired tend to yield diminishing marginal returns, meaning that the AWI becomes less 
sensitive to further improvements in household wealth at these higher levels. 

The methodology developed in this study, thus, required that the AWI values of treatment and 
control sites were between -0.5 and 1.25, i.e., spending was between US$1 and US$6 PPP per 
capita per day. As will be shown below, this was indeed the case for all the DRC.                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28 For more information: https://docs.atlasai.co/economic%20well-being/spending/ 
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Figure 5. Household spending (in 2021 US$ PPP per capita per day) vs. AWI for the DRC for 2017–2021. The fitted 
curve represents the best fit fractional polynomial for the year 2021.  

 

3.5. Limitations 
Although the approach used in the study has several notable benefits,29 it does have some 
limitations.  

• It is not currently possible to disaggregate impacts for different socioeconomic groups 
(including for men and women), given that the resolution of the AWI dataset is a 
maximum of 1 km x 1 km polygons. It is also not possible to ‘look under the hood’ to 
isolate the precise drivers of increased asset wealth due to access to broadband internet.  

• The time between treatment (i.e. presence of fibre access in a settlement) and robust 
impact evidence in terms of AWI and spending is substantial – a minimum of four years as 
described in this report. Over such a long period, known and unknown confounding 
factors may become important. 

• Above per US$ 6.00 (2021 PPP) per capita spending in DRC, the relationship with AWI 
breaks down, which potentially limits the approach in some areas. Given the spending 
distribution in DRC this does not seem to pose much of an issue in DRC. However, in other 
countries this may be a limitation, because the relationship between AWI and spending is 
country dependent. 

 

 

29 Including the completeness of the AI-derived AWI dataset, the ability to examine impacts retrospectively, and the fact that it does 
not require the collection of primary data, as discussed elsewhere in this report. 
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• The AWI dataset relies in part of DHS surveys, the funding for which has become 
uncertain due to recent budget cuts in USAID. New sources of funding or alternative data 
sources may or may not become available in the future, which poses some questions on 
the future continuity of the AWI dataset.  
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4. Evaluation methodology 
This section provides a step-by-step explanation of how the approach was defined in practice 
and implemented. The methodology is broken down into three key steps: 

• Step 1: Identification of geotagged data on new connections and new infrastructure to map 
where and when the project was rolled out over time. This enabled the treated location to 
be identified, selected, and included in the study. 

• Step 2: Identification of non-treated locations in the same province that shared sufficient 
similarities with the treated locations to form the basis of synthetic controls. 

• Step 3: Comparisons of asset wealth accumulation over time between the treated and 
synthetic control units are then used to identify the net effects of the intervention. 

Each step is discussed in turn, explaining the design choices made and the sub steps and actions 
in each part of the process. 

4.1. Step 1: Identifying and selecting treated locations 

4.1.1. Data identification, entry and cleaning 

Two principal datasets were identified and used to identify treatment settlements: 

1. Time series satellite imagery and AtlasAI proprietary datasets. 
2. Geotagged data on Liquid Technologies installed equipment along the fibre line. 

The AtlasAI proprietary dataset30 used to identify treated and non-treated settlements in this 
study is the Human Settlement layer. The analysis period is 2012–2024, and the outcomes of 
interest (asset wealth and spending) vary annually. Further information on how these datasets 
were used is outlined below. AtlasAI’s databases provide a high degree of customisability. The 
ability to adjust and fine-tune the data points used during the study offers a degree of flexibility 
which is usually not available in a traditional impact evaluation design once on-the-ground data 
collection has commenced. 

Regarding the second dataset, geotagged data on infrastructure locations enables us to track 
where service has been provided throughout the DRC. We know that the SNEL line became 
available in March 2021, and the Kananga-Goma line became operational in May 2023. As per 
June 2025, a total of 37 nodes (both ADMs and intermediate line amplifier (ILA) locations) were 
present along both fibre lines, as shown in Figure 6. Of these, 14 were ADMs31 installed during 
2021. Exclusion of the ADMs in Kinshasa and Lubumbashi, which were intentionally connected 
and combination of ADMs that were within 5km of each other, resulted in 9 ‘treatment’ towns. 
The arrival of fast internet through broadband fibre in these towns was an exogenous event (i.e. 
connection was accidental) as opposed to endogenous (connection was intentional).  

 

 

30 Available in 1 km x 1 km polygons. 
31 ILAs were excluded because they do not allow for adding or dropping internet traffic.  
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Figure 6. Location of add/drop locations considered in this study. Red dots indicate treatment towns and are dots are 
dropped either because they are not ADMs or because they were installed post 2021. 

 

4.1.2. Defining the treatment areas 

Unlike its MNO clients, Liquid has no line of sight to the customers who use the Internet. In 
addition, because most people access the Internet through mobile devices, often through prepaid 
cards, MNOs do not know where their customers live.32 In order to define the areas that have 
access to faster Internet, one has to define catchment areas based on the location of ADMs. This 
situation is markedly different compared to when geotagged information is available for 
customers, in which case the treatment area or group can be defined exactly.33 Below we discuss 
how treatment areas have been defined using data from AtlasAI’s Human Settlement layer. 

AtlasAI’s Human Settlement layer fuses a range of input data sources at varying spatial 
resolutions to detect human settlements.34 In this way, settlement areas have been identified 
around the Liquid ADM locations. The coverage ratio of a mobile telecommunications tower in 

 

 

32 Through triangulation between different antennas, MNOs can determine from where customers access the Internet. 
33 A good example is Virunga Energies (How does access to green energy transform rural communities? Insights from Virunga 
Energies - British International Investment), where access to electricity was known at the level of individual (geotagged) households.  
34 For more information on this, see https://www.atlasai.co/blog/atlas-of-human-settlements  

https://www.bii.co.uk/en/news-insight/insight/articles/how-does-access-to-green-energy-transform-rural-communities-insights-from-virunga-energies/?fl=true
https://www.bii.co.uk/en/news-insight/insight/articles/how-does-access-to-green-energy-transform-rural-communities-insights-from-virunga-energies/?fl=true
https://www.atlasai.co/blog/atlas-of-human-settlements
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the 4G band ranges from 3 km to 6.5 km,35 depending on atmospheric conditions and the density 
of the built environment. The higher the bandwidth of the signal, the higher the signal’s 
frequency and the lower the range of a mobile tower. Based on this, a range of 10 km around the 
ADM is a defensible catchment area. In such a 314 km2 area36 around an ADM, typically there are 
many settlements. By defining the actual treatment area as the most populous settlement within 
that radius37, we assure that the characteristic treatment areas are most comparable. This is 
because these settlements are likely to be entirely urban, whereas the full circular catchment 
areas can have very different urban/rural distributions. This is illustrated in Figure 7.  

Figure 7. All settlement areas in the DRC and an example of a settlement area around a Liquid add/drop location 

 

4.1.3. People reached in the treatment areas 

According to AtlasAI’s Human Settlement layer, 3,131,622 people live in the nine treatment 
areas. This is 2.8% of the approximately 109.3 million population of the DRC. In this section we 
estimate the number of people that can be expected to benefit from faster and more reliable 
Internet. 

 

 

35 Source: https://dgtlinfra.com/cell-tower-range-how-far-reach/  
36 Area = 3.14 x 102 = 314 km2 

37 When the most populous settlement extends outside of the radius, the settlement population outside the radius is included 

https://dgtlinfra.com/cell-tower-range-how-far-reach/
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Because the treatment areas are entirely urban, and because there are differences between 
males and females’ use of the Internet, we first break down the entire population into four 
quadrants, based on the urban/rural split of 47.1%/52.9% and the male/female split of 
49.6%/50.4%38, as shown in Table 2. 

Table 2. Breakdown of the DRC’s population39 

DRC Population Urban Rural Total 

Male 25,534,229 28,678,571 54,212,800 

Female 25,946,071 29,141,129 55,087,200 

Total 51,480,300 57,819,700 109,300,000 
 

Per 2024 data, the World Bank estimates that Internet penetration in the DRC was 31%, or 33.8 
million people. GSMA reports that in Sub Saharan Africa, people in rural areas are 54% less 
likely to use the (mobile) Internet than urban users. Using the population breakdown in Table 2, 
this means penetration rates of 38.1% in urban areas and 24.7% in rural areas. Because all 
treatment areas are in urban locations, we estimate that there are 1,191,891 urban internet 
users in the treatment settlements that potentially benefit from faster internet. But there are 
also internet users outside the treatment areas, and the number is therefore likely higher. 

According to the GSMA, female users are 37% less likely than men to use the Internet. Combining 
this with the number of people who live in the urban treatment areas allows disaggregation of 
all people that benefit from faster internet into 726,691 men and 465,200 women. This is about 
3.5% of all 33.8 million Internet users and 6.0% of all urban Internet users in the DRC.40 These 
numbers will increase as internet penetration rates continue to go up in the treated settlements, 
and more fibre access points will be added. Most of the affected people and companies had 
rudimentary internet access before the SNEL line became operational, but the low speeds and 
high latency would not have allowed them the full range of services, such as streaming, working 
from home, and accessing government, education and other services. With the SNEL line 
operational, MNOs can invest in 4G and 5G infrastructure.41  

In Africa, 4G antenna towers are typically connected through a dedicated backhaul fibre line to 
the backbone fibre line when the distance is less than 10km. For longer distances, microwave 
backhaul can be used up to distances of about 20km. By counting the urban and rural and 
population that live within these distances (i.e. in strips of 20km and 40km around the SNEL line) 
and by applying the above-mentioned urban and rural internet penetration rates, the total 
number of users that can potentially benefit from better quality internet are estimated in Table 3.  

 

 

38 According to the AtlasAI data, women make up 50.6% of the population in the treatment settlements. For sake of consistency and 
simplicity, we here use country average data on the urban/rural and male/female splits.  
39 Steward Redqueen analysis based on World Bank and Datareportal data. In this estimation there are four unknowns and three 
degrees of freedom in the data, meaning there are infinite solutions. To close the system, we impose that the distortion of 
proportionality on both dimensions is minimised. 
40 In all likelihood, these numbers will be higher – there are people outside of the treatment areas but inside the catchment radius of 
the add/drop points – but here we focus only on the largest settlements. 
41 Liquid offers shared connections to end customers as well, but that was outside the scope of this study. 
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Table 3. Urban and rural population and internet users that live within 10km and 20km from the SNEL line42. 

 Urban Rural Total 

Population <10 km 4,063,519 3,096,016 7,159,535 

Population <20 km 5,238,496 4,835,534 10,074,030 

Internet users <10 km 1,546,569 382,222 1,928,892 

Internet users <20 km 1,993,764 492,743 2,486,507 
 

By assuming that the 10km and 20km distances constitute lower and upper estimates, the above-
mentioned 1,191,891 internet users in the treatment settlements make up 60%-77% of the urban 
internet users and 48%-62% of all internet users along the SNEL line. Connecting all these 
people to high-quality internet will require more ADMs to be installed along the SNEL line, more 
towers to be installed by MNOs, and capable handsets to be bought by consumers. As both the 
total population and the internet penetration continue to increase, it is reasonable to assume 
that the total number of people that will benefit from the SNEL line will be at least double the 
1,.2 million people in the treated settlements, say 2.5 million. 

4.1.4. AWI and household spending characteristics of people in treatment areas 

As shown in Figure 8, the treated (urban) settlements have considerably higher AWI value than 
the DRC’s average. In fact, the AWI value of the treated settlements is higher than 98% of all 
settlements in the DRC. Translation of these AWI values into spending, using the relationship 
shown in Figure 5 results in a mean spending of US$3.38 PPP per capita per day. This is higher 
than 91% of the DRC’s population, which spend on average US$2.25; As per Figure 9, the 
treatment sites are above the World Bank’s international poverty line of US$3.00 but well below 
the US$4.20 poverty line for lower-middle income countries. We also note that substantially all 
settlements in the DRC are below the US$8.30 (or US$6.85 in 2011 PPP) World Bank upper-
middle income threshold.  

  

 

 

42 The large cities like Kinshasa and Lubumbashi are not included because they were not ‘accidentally’ connected as explained before. 
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Figure 8. 2020 AWI for the treated donor pool settlements. 

 

Figure 9. 2020 Household spending for the treated donor pool settlements in US$ 2021 PPP. Also indicated are the 
three World Bank poverty thresholds 

 



Final Report 

22 

 

4.2. Step 2: Identification of a ‘donor pool’ of non-treated settlements 
SCM requires a pool of donor units from which for each treatment a selection will be made 
which will serve as the unobserved counterfactual after treatment. Out of a candidate pool of 
over 120,000 urban settlements in the DRC, we selected 58 candidates in the donor pool of non-
treated settlements across all the DRC, based on the following criteria: 

• Only settlements with a population over 50,000 were considered  

• Cosine similarity testing43 on population, AWI (2012 and 2020), and spending (2012 and 
2020) levels and trends 

The 58 candidate settlements in the donor pool are shown in Figure 10 and the demographic and 
spending characteristics of the nine treatment and the 58 donor units are summarized in Table 4 
and in Figure 8 and Figure 9.  

Figure 10. Donor pool of 58 settlements (blue) superimposed on Figure 6  

 

 

 

43 Cosine similarity testing is a simple way to see how alike two sets of data are. In mathematical terms, it measures the cosine of the 
angle between two multi-dimensional vectors. 
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Table 4. Summary statistics of settlements in the treated settlements and all settlements in the DRC 

 9 Treatment sites 58 Donor sites 

Population (2020)   

Average 335,984 141,039 

Median 210,013 79,911 

Mean spending levels (2020)   

2021 US$ PPP per day per capita 3.38 3.37 

2011 US$ PPP per day per capita 2.00 2.08 
 

Figure 11 shows how both the average AWI and spending levels are very similar for the nine 
treatment sites and 58 donor pool, both in terms of values and evolution until the last full pre-
treatment year (2020). This means that the cosine similarity search has yielded a suitable pool of 
donor units that will enable the SCM to construct a realistic synthetic control for each of the 
treatment sites. 

Figure 11. Evolution of AWI and household spending for the candidate pool and the selected units from the donor pool  

 

4.3. Step 3: Conducting synthetic control analysis 

4.3.1. Illustration of SCM algorithm using a specific example 

The synthetic control comprises a weighted average of some settlements in the donor pool. In 
the SCM with elastic net approach, we iteratively calculate the synthetic control for each treated 
unit. Figure 12 shows that the synthetic control for the treated settlement near the city Kikwit is 
composed of a weighted average of seven settlements in the donor pool. The selection of the 
units and the weights assigned to each of them were determined by the SCM algorithm. The 
weighted average AWI behaviour of the seven units most closely resembles that of the treated 
unit before Liquid’s fibre backbone treatment in 2021 and serves as the unobserved 
counterfactual after treatment. The weights sum to a value slightly greater than 1. The reason 
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for this is that while on average the treatment and donor settlements are very similar in terms of 
AWI and spending, this may not be the case for each individual treated settlement. 

Figure 12. Treated settlement (green) and the non-treated settlements that constitute the synthetic control (red) 

  

4.3.2. Synthetic control method with elastic net 

In the description above we used the so-called elastic net SCM method. In this section we 
provide some more background on the different ways in which SCM can be performed. 

The classical SCM approach was designed primarily to estimate the effects of large aggregate 
interventions focused on a small number of large treatment units (typically one) where data is 
available (for both dependent and independent variables) over a longer time horizon. This study 
applies this approach in a slightly different context in which there are multiple treated and non-
treated units and where data is available over a relatively short time horizon (both pre- and 
post-treatment). In this context, the data could have been aggregated before the analysis stage, 
and the classical SCM approach could have been applied across all the treated and non-treated 
pool units as one, but this would have risked masking underlying data heterogeneity. 
Alternatively, classical SCM analyses could have been conducted for all individual treated and 
non-treated units separately, but this would have been highly resource-intensive and would 
have risked overcomplicating the analysis stage. 

The elastic net SCM approach which was deployed in this study offers a more relaxed definition, 
with a regularisation function that helps the model to make generalisations when predicting the 
counterfactual for post-treatment years but avoids overfitting. This is helpful in situations (such 
as this one) where the data record is not extensive and there are residual differences between 

Unit ID Weight
11316         0.21 
60720         0.26 
71537         0.17 
116382         0.06 
128477         0.05 
129841         0.28 
138430         0.11 
Total         1.13 
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treatment units and the donor pool.44 It is a variation which has been used frequently in the 
literature.45 As illustrated in Figure 13, in this context SCM with elastic net offers the ‘best of 
both worlds’ in terms of striking a pragmatic balance between applying the classical SCM 
approach across all treated units separately and running a single classical SCM across all 
treated units as one. 

Figure 13. Different versions of the SCM algorithm 

 

Annex 3 provides a more detailed comparison between the classical SCM approach and SCM 
with elastic net and provides more detail on the specific technical definition of ‘SCM with elastic 
net’ used in this study, including some of the implications of relaxing the constraints of the 
classical SCM used. 

In practice, the version of SCM with elastic net used in the analysis was defined as follows: 

1. Weights of donor units are not restricted to sum to 1  
2. Weights of donor units cannot be negative (which forces a smaller number of donor units 

to be selected) 
3. No intercepts are allowed (an intercept allows for a level shift where the trend remains 

the same). 
This is a variation on the standard SCM with elastic net. The standard SCM definition typically 
also relaxes the classical SCM approach to allow weights to be negative (which is a further 
advantage when dealing with data over shorter time horizons). We felt that this further 
relaxation of the model was not necessary in this case, given the selection procedure to identify 
a donor pool which is broadly similar to treated settlements pre-treatment (see Section 4.2).. 

This model predicts the counterfactual by weighting each post-period control variable. These 
weights are determined through panel-like regression within the pre-treatment period, in which 
we are regressing a single treated unit on the full panel of control units. We did not include any 

 

 

44 Based on the use of an elastic net drawing on a combination of lasso and ridge penalties. 
45 Ratledge, N. et al. (2021) Using Satellite Imagery and Machine Learning to Estimate the Livelihood Impact of Electricity Access. 
https://doi.org/10.3386/w29237 

Time-efficient, but potential 
to mask underlying data 

heterogeneity

Time-intensive, and challenges of 
aggregating and interpreting the 

results of many seperate SCM analyses

Classical SCM applied 
to one aggregated 

treatment unit

Classical SCM applied 
to all aggregated 

treatment unit

SCM with elastic net

‘Best of both worlds’

https://doi.org/10.3386/w29237


Final Report 

26 

covariates in the model, and we used an alpha of 0.5 (elastic net), which is a mix of lasso and 
ridge penalties. More information on penalty factor can be found in Annex 3.3.  
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5. Key findings
The nine treatment sites (see Figure 6) received access to fast internet at different dates in 2021. 
Because the AWI and spending data are available on a yearly basis, we consider 1 January 2021 
to be the start of the treatment period.46 

5.1. Change in AWI for connected settlements 
The rise in asset wealth observed in connected settlements suggests a positive impact 
attributable to the treatment. Figure 14 shows the results of the AWI evolution of the aggregated 
nine treated settlements. As intended, before treatment, the Synthetic Control behaves very 
similar47 to treated settlements and demonstrates is validity as a counterfactual against which to 
assess post-treatment effects. In terms of the AWI histogram in Figure 8, the treated settlements 
have moved from the 98th percentile in 2020 to the 99th percentile in 2024, whereas the synthetic 
control has moved from the 97th to the 98th percentile. 

Figure 14. AWI of the Synthetic Control and treatment units before and after the arrival of fast internet in 2021 

From the start of the treatment period, the AWI of treatment units increases faster than that of 
the synthetic control. While this points to a causal effect due to the arrival of fast internet, one 
must be cautious for three reasons: 

46 In the graphs the start of the treatment period is shown at 2020 because that indicates 31 December 2020. 
47 The match is not identical meaning that the SCM does not overfit (or overly customizes). This is a good indication that the SCM 
distills genuine trends instead of capturing idiosyncratic patterns that do not persist after the intervention.  
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1. The possible presence of unobserved confounding factors that are not captured in the pre-
treatment period. These confounders may influence the treated and the synthetic control
units differently.

2. Idiosyncratic post-treatment shocks or events in the southern DRC region. For example, the
first years after the arrival of fast internet in this region in 2021 coincide with the Covid 19
pandemic and the subsequent recovery. It is possible that regional differences in the
pandemic’s severity and the strength of the subsequent recovery can be a source of bias.

3. The fact that the confidence intervals of the treatment units and the SC overlap in 2024.

The last point can be analysed more precisely by determining the probability that the treatment 
result could have been obtained by chance. Every donor pool unit can be viewed as having 
undergone a placebo treatment48. By examining the gap between the AWI trajectories of each of 
the 58 placebos in the donor pool and the treatment units, one can count how many exhibit a 
treatment effect stronger than that observed in the treatment units. The number of placebos that 
show a larger effect than the treatment group divided by all 58 placebos is often referred to as a 
pseudo p-value. The results of placebo testing are depicted in Figure 15 and show that following 
the pre-treatment period49, each donor unit's outcome is influenced by its unique set of post-
treatment shocks and circumstances, leading to greater divergence in their trajectories 
compared to the pre-treatment period. Although the pseudo p-value post treatment is trending 
lower than the pre-treatment value of 0.48, it also means that the probability that observed 
treatment effect could have come about randomly is 0.32, which is much higher than 0.05 which 
is typically seen as statistically significant.  

48 Abadie, A., A. Diamond and J. Hainmueller, Synthetic control methods for comparative case studies: Estimating the effect of 
California’s Tobacco control program, NBER Working Papers Series 12831, 2007. 
49 One expects before treatment the pseudo p-value to be around 0.5 on average, which is an indication that the average of the donor 
pool behaves very similar to the treatment group (i.e. an equal number of donor units above and below the treatment group) 
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Figure 15. AWI gap between of each of the donor units (dotted line), the treatment group (bold solid line) and the 
Synthetic Control. 

Greater robustness of the results primarily requires a longer post-treatment period. Many 
synthetic control studies48 have shown that as time passes the cumulative gap between treated 
units and the synthetic control becomes more pronounced. Moreover, random placebo effects 
dissipate over time, which further decreases the pseudo p-value. Given that the SCM has been 
set up, repeating the analysis in the future can be done at minimal cost. 

5.2. Change in spending for connected settlements 
The increased spending observed also points to a positive impact attributable to the treatment. 
The AWI results can be translated into spending by using the relationship shown in Figure 5. This 
translation has been done individually for all 1x1km pixels that constitute the treatment and 
Synthetic Control units. The results shown in Figure 16. In terms of the spending histogram in 
Figure 9, the treated settlements have moved from the 91st percentile in 2020 to the 98th 
percentile in 2024, whereas the synthetic control has moved from the 89th to the 94th percentile. 
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Figure 16. Average household spending (in 2021 US$ PPP per capita per day) of the Synthetic Control and treatment 
units before and after the arrival of fast internet in 2021. 

The spending results mirror the trends observed in the AWI results, but in a more pronounced 
way: in the treated settlements, spending went up from by US$ 1.25 to US$ 4.80 per capita day in 
2021 PPP terms (+33%), compared with an increase of US$ 0.30 to US$ 3.60 (+9%) in the 
Synthetic Control. In other words, spending of households in the settlements that were 
connected to the fibre line increased by US$ 0.95 per capita per day more compared to 
households in settlements that were not. When taking the confidence intervals into account, the 
findings for spending appear to be more robust, lending further weight to the positive impact 
attributed to the arrival of fast internet.  

The results of placebo robustness testing are shown in Figure 17. The number of placebo units 
with a larger impact than the treatment units is much smaller compared to AWI. Importantly, 
the pseudo p-value is trending down from 0.24 after treatment to 0.07 in 2024. It is important to 
note, however, that since spending is derived from AWI, the additional assumptions and 
propagating errors in the derivation make spending a less stable dataset than AWI. 
Consequently, the seemingly greater robustness of the spending results should be interpreted 
with caution, as it may overstate the true reliability of these findings.50 

50 The spending results are derived for all individual 1km x 1km pixels. Because of the nonlinear relationship between AWI and 
spending shown in Figure 5, inter-settlement heterogeneity can artificially amplify the strength of the impact signal. 
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Figure 17. Spending gap between of each of the donor units (dotted line), the treatment group (bold solid line) and the 
Synthetic Control. 
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6. Findings and recommendations
This section outlines the key conclusions and the recommended next steps for BII and the FCDO. 
The key conclusions are framed according to the original two key study purposes, focusing on i) 
the extent to which the study has been able to identify evidence of the impact of BII’s investment 
in Liquid Technologies and its DRC broadband fibre backbone and, in doing so, fill a strategic 
evidence gap for BII in the infrastructure portfolio and ii) whether this study has been able to 
demonstrate proof of concept for an innovative, low-cost and rigorous approach to assessing 
impact in infrastructure projects. 

6.1. Findings 
Liquid’s SNEL broadband fibre cable is providing an estimated 2.5 million internet users with 
access to faster and more reliable internet. 

For reasons of comparability with settlements that do not benefit from fast internet, this study 
focused on nine urban settlements in which MNOs can connect their networks to Liquid’s fibre 
cable. In these settlements, based on population statistics and World Bank and GSMA estimates 
of internet penetration among urban/rural and male/female populations in DRC, we estimated 
that 726,691 male and 465,200 female, i.e., 1,191,891 internet users, would potentially51 have 
access to faster and more reliable internet. The total number of users that benefit from the fibre 
line is likely twice as large, i.e. approximately 2.5 million, because these numbers do not include 
people outside of the nine urban areas considered here. Moreover, these numbers will increase 
as internet penetration rates continue to go up and as more settlements along the SNEL line (or 
further away from it) are connected through network investments by MNOs.  

Although well below US$4.20 lower-middle income threshold of the World Bank, the studied 
population live in urban areas and are wealthier than most of the DRC’s population  

In terms of average AWI, the households in the treatment areas are wealthier than 98% of the 
entire DRC population. Their average spending per capita in 2020 of US$3.38 (in 2021 PPP 
terms), although higher than 91% of the DRC’s population, was well below the US$4.20 and 
US$8.3052 per day per capita that the World Bank defines as the lower-middle income and 
upper-middle income thresholds, and close to the international poverty line of US$3.00.  

There was emerging evidence that households in the nine urban settlements studied have 
benefitted because of the fibre line.  

Almost four years after the arrival of faster internet, the households in these nine urban 
settlements experienced the following: 

• An increase in the average household asset wealth (as measured by AWI) has moved the
treated settlements from the 98th to the 99th percentile settlements. This compares to the
synthetic control settlements moving from the 97th to the 98th percentile.

51 Whether or not existing internet users can benefit from faster internet does not only depend on their vicinity to Liquid’s fibre line 
but also whether the networks of MNOs and the handheld devices of the users allow for faster data transmission. 
52 These thresholds are in terms of 2021 PPP spending. In terms of 2017 PPP spending, they correspond to US$3.65 and US$6.85. 
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• US$1.25 PPP higher spending per capita in 2024, compared to an increase of US$0.30 for the
synthetic control. In other words, the spending of households in the settlements that were
connected to the fibre line increased by US$0.95 per capita per day more compared to
households in settlements that were not. This has moved the treated settlements from the
91st to the 97th percentile for spending set against the distribution of all households in the
region, compared to the synthetic control, which moved from the 89th to the 94th percentile.

These results, however encouraging, are not sufficiently robust yet to claim strong causal 
inference.  

There is a 32% probability that the observed AWI results could have arisen by chance, which is 
well above the usual 5% considered as statistically significant. Although the spending results 
have greater statistical significance, at 7% in 2024, the higher confidence should be interpreted 
with caution. Since spending is partially derived from AWI, the additional assumptions and 
propagating errors within it make it a less stable dataset than AWI. Consequently, the true 
reliability of these findings may be overstated.  

Care must be observed to infer causality. 

The SNEL line covers a very large area and unobserved confounding factors in the pre-
treatment period and idiosyncratic post-treatment shocks can introduce sources of bias. The fact 
that the first years after the fibre line became operational coincided with the Covid 19 pandemic 
and the recovery from it is an example of this. Any regional differences in the severity or 
recovery speed could have affected the findings. 

Recommendations 
1. Based on the emerging evidence collected in this study, BII should consider other

broadband investments in underserved regions. Because of its size, inaccessibility and
limited economic development, the DRC is among the most underserved countries in
terms of backbone fibre. Although globally the largest gaps in backbone infrastructure
are being filled, there are still regions where backbone internet investments are much
needed. Within the DRC, the completion of the Kananga – Goma line is recommended.
Some examples other than DRC are Ethiopia and South Sudan.

2. We recommend that BII continues to invest in the ‘last mile’ through which people access
the internet. The presence of broadband fibre is necessary but not sufficient to increase
internet quality and penetration. Last mile investments in internet connectivity involve
MNOs through the (co)hosting of towers and higher bandwidth mobile antennas. They
also involve financing internet-capable handsets, which the Global System for Mobile
Communications Association (GSMA) now considers the single greatest barrier keeping
people offline.

3. If possible, pursue opportunities to ground-truth the findings for this investment and to
understand the drivers of change at a household level. BII can seek opportunities to
ground-truth the findings of this study by comparing the results to evidence collected
through other methods, including primary (survey) data. This could involve estimating
(with MNOs that use the fibre line) how internet penetration and usage have developed in
the regions along the line, as well as how business growth and productivity have changed
in these areas. While broadband fibre forms the essential backbone for internet
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connectivity, it alone does not guarantee increased usage or penetration, and a ground-
truthing study should also examine other elements along the evidence chain to provide a 
more comprehensive understanding. 

4. Repeat the analysis in two years to increase the statistical robustness of the emerging
impact and its durability and include more settlements that were connected after 2021

a. When the impact is durable over a longer post-treatment window, the cumulative
gap between treated units and the synthetic control should become more
pronounced. Statistical confidence also increases as random (placebo) effects
dissipate over time.

b. More settlements have obtained fibre access points after 2021, both along the
SNEL line as well as the Kananga–Goma line, if fully completed (see
recommendation 1). Inclusion of these settlements could also strengthen the
robustness of the study. An important requirement, based on the results in this
study, is that four years of post-treatment data should be available. Including
settlements that were connected from 2022 onwards would also mitigate the
possible impact of any regional heterogeneity resulting from the intensity of and
the recovery from the Covid 19 pandemic.
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Annex 2: Data accessed 
Source Year(s) Variable Definition Format Use 
Liquid 
Technologies 

2024 ADMs Location of access points 
on the fibre cable 

Vector shapefile Used to identify treatment communities. 

AtlasAI 
datasets 

2012-
24 

Per capita 
spending 

Estimate of poverty 
(US$/person/day) 

High-resolution 
rasters at 1 km x 1 km 
scale 

Used to understand general characteristics of settlements in the 
treatment and donor pools but not used in cosine similarity analysis or 
in developing synthetic controls (AWI is preferred as a superior 
measure). 

Asset wealth Relative wealth of 
community (index) 

High-resolution 
rasters at 1 km x 1 km 
scale 

The dependent variable in the causal inference analysis and used in the 
cosine similarity analysis. 

Population Population count (number) High-resolution 
rasters at 1 km x 1 km 
scale 

Used as a comparison to the WorldPop population dataset. 

Electrification Status of electrification 
(yes/no) 

 Used as a comparison to the High-Resolution Electricity Access (HREA) 
electrification dataset. 

Atlas of Human 
Settlements 

All built-up areas (yes/no) Vector shapefile Used to delineate settlements and represent each unit in the treatment 
or donor pool. 

Demographic 
and Health 
Surveys (DHS) 

2013–14 Occupation Percentage of population 
employed in various 
industries  

Country-wide survey 
data 

Used to understand general characteristics of settlements but not used 
in cosine similarity analysis or in developing synthetic controls (not 
deemed to add additional value beyond selected variables). 

WorldPop 2012–20 Population 
density 

Population density 
(people/km2) 

High-resolution 
rasters at 100 m x 
100 m scale 

Used to understand general characteristics of settlements but not used 
in cosine similarity analysis or in developing synthetic controls (not 
deemed to add additional value beyond selected variables). 

Population Population count (number) High-resolution 
rasters at 10 m x 10 m 
scale 

Used in the cosine similarity analysis. 

OpenStreetMap 
(OSM) 

Current Health facilities Location of health 
facilities 

Vector shapefile Used to understand general characteristics of settlements but not used 
in cosine similarity analysis or in developing synthetic controls (not 
deemed to add additional value beyond selected variables). 

School facilities Location of school 
facilities 

Vector shapefile Used to understand general characteristics of settlements but not used 
in cosine similarity analysis or in developing synthetic controls (not 
deemed to add additional value beyond selected variables). 

Roads Location of roads Vector shapefile Used in the cosine similarity analysis. 
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Annex 3: SCM approach 

A3.1. Different versions of the synthetic control approach 
There are many versions of the SCM, which can be tailored to different implementation scenarios. 

Version Description Useful in situations where… Implications for this study 

Classical SCM Designed primarily to estimate 
the effects of large aggregate 
interventions focused on a small 
number of large treatment units 
(typically one). Can, in theory, be 
applied to a larger number of 
treatment units through separate 
classical SCM for all treated 
units, but this has implications. 

…there is one treatment unit of 
interest, with many potential 
donor units, and where data (for both 
dependent and independent 
variables) is available over a longer 
time horizon, for example an 
assessment of policy changes at a 
national level. 

High degree of rigidity: donor unit weights must be non-negative; donor 
unit weights must sum to 1; values of the predictors for the treated unit 
should be near or inside the convex hull of the values for the donor pool. 
Risk of masking underlying data heterogeneity if data is aggregated before 
analysis, or risk of overcomplicating analysis if individual classical SCM is 
performed for all treatment units. 
Resource-intensive if separate SCM applied to all treated units. 

SCM with elastic net Similar to classical SCM, but with 
a more relaxed definition with a 
regularisation function to reduce 
overfitting,53 which has been used 
frequently in the literature.54 
Allows for aggregation at 
analysis stage rather than of the 
underlying data. 

…there are multiple treatment units, 
and a balance is sought between 
applying a single classical SCM and 
running many individual classical 
SCMs in parallel for all treated units. 
Typical applications include 
assessments at regional or 
settlement level. More relevant in 
situations where data is available 
over shorter time horizons as a 
result of relaxations.55 

More flexibility/less rigidity allows for more treatment units than years of 
treatment; donor weights can be negative; donor unit weights do not have 
to sum to 1. 
Less susceptible to overfitting in situations where the data record is not 
extensive. 
Offers a ‘middle ground’ between either applying a single classical SCM to 
all treatment units together, as the approach was initially intended (this 
leads to challenges in aggregating underlying data pre-analysis), or 
attempting to run separate classical SCMs for each treatment unit (this 
leads to challenges associated with the complexity of later analysis). 

 

 

 

53 Based on the use of an elastic net drawing on a combination of lasso and ridge penalties. 
54 Ratledge, N. et al. (2021) Using Satellite Imagery and Machine Learning to Estimate the Livelihood Impact of Electricity Access. https://doi.org/10.3386/w29237 
55 Nevertheless, a minimum of five years pre- and post-treatment is recommended. 

https://doi.org/10.3386/w29237
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A3.2. Implications of relaxing the constraints of the synthetic control method 
The SCM constructs a synthetic control unit by combining weighted observed units in order to estimate the counterfactual outcome for a treated 
unit. One of the assumptions of the classical SCM is that the weights assigned to the observed units should sum to 1. We decided to relax this 
constraint in our analysis. We are aware of a few potential implications of doing this: 

• Bias in estimated treatment effect. The constraint that weights sum to 1 ensures that the synthetic control is a convex combination of the 
observed units. This convexity property is important for maintaining a balanced and unbiased estimate of the treatment effect. If the 
constraint is relaxed, it is possible that the synthetic control will become skewed towards certain units, leading to biased treatment effect 
estimates. 

• Model overfitting. Relaxing the weights sum constraint can lead to overfitting, whereby the synthetic control becomes too tailored to the 
pre-treatment outcomes of the treated unit. 

• Loss of interpretability. The weights sum constraint enhances the interpretability of the synthetic control. When weights are required to sum 
to 1, each weight represents the proportion of the corresponding observed unit’s characteristics in the synthetic control. Without this 
constraint, it is possible that the resulting weights will not have clear interpretive value. 

Although recognising these potential implications, we opted to relax the classical SCM requirement that weights should sum to 1. This is a 
recognised tactic when using our chosen analytical approach (SCM with elastic net). It offers more flexibility/less rigidity and is especially 
appropriate in cases where there is a relatively large number of treatment units but relatively few treatment years. We combined this approach 
with a regularisation function to reduce susceptibility to overfitting. 

A3.3. Exploring penalty factor to fine-tune the synthetic control model performance 
In our regression approach for synthetic controls, we tested three different penalty factors to see how they would affect the results, particularly 
the match between the synthetic control and treatment units in our pre-treatment time period (2012–20). This penalty factor ranges from 0 to 1, 
representing ridge and lasso penalties respectively. Any value between 0 and 1 is considered elastic net. The goal of the penalty factor is to 
control the complexity of the model and improve generalisation performance. 

Below is a description of how each penalty affects the synthetic control model and how we fine-tuned our model’s performance: 

• Ridge penalty (alpha = 0): The ridge penalty is like a safety net that helps our causal inference model maintain stability. It does not forcefully 
remove any donor units from our model, but it encourages them to be more consistent. When we use ridge in our causal inference analysis, 
it reduces the risk of our model being too sensitive to small changes in our data. This is important because it helps ensure that our results 



Final Report 

40 

are reliable over time. In essence, ridge helps keep our model steady and dependable when matching synthetic control units with treatment 
units from the pre-treatment period (2012–20). 

• Lasso penalty (alpha = 1): The lasso penalty is like a strict editor for our causal inference model. It emphasises picking only the most 
important pieces of information from our data. When we apply lasso in our analysis, it forces some donor units to be completely excluded, 
and the focus is on the most influential ones. This simplifies our model and makes it easier to understand. In the context of causal inference, 
lasso helps us pinpoint the key units that drive a strong match between the synthetic control and treatment units; it streamlines our model 
and boosts its performance. 

• Elastic net penalty (alpha = 0.5): The elastic net penalty (with an alpha value of 0.5) is a compromise between ridge and lasso. It combines the 
stability of ridge with the donor unit selection of lasso. In our causal inference model, elastic net gives us a way to balance the complexity of 
the model, ensuring it is both robust and interpretable. 

We experimented with all three penalty values in our model to determine which one yielded the optimal outcomes when aligning our synthetic 
control with the treatment sites. Our objective was to find the right equilibrium between achieving a strong fit between the synthetic control and 
treatment sites and avoiding overfitting to any noise in the data. Results for all three methods are shown, but for future analysis we recommend 
the elastic net penalty, because it strikes a balance between stability and complexity.  
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Annex 4: Key definitions and derived metrics 

Asset Wealth Index 
AtlasAI’s Asset Wealth layer estimates household asset wealth based on asset ownership. The original AWI is a derived construct that considers 
assets such as electric appliances, nightlights, and land owned by a household.  

Population and population density 
Population and population density are measures of population count and population per km2. This variable will be used to assess how population 
and population density have been changing over time. The layer has been attributed to the settlement areas with data for the years 2012–21. 

Road access, length and density 
Road access is a derived indicator using road locations from OSM and AtlasAI settlement areas. This metric measures the Euclidean distance 
between each catchment area and the nearest major road, defined as primary, secondary or tertiary. The distance to the nearest roads provides a 
way to determine the accessibility of each settlement. Road length and density are similar metrics and provide a way to further describe 
settlements that contain roads. Road length is the total length of major roads within a settlement area; density is the total length of major roads 
divided by the settlement area. Of the 148,157 catchment areas, only 31,328 contained a major road. If a settlement area contains a higher density 
of major roads compared to another settlement area, this could indicate that the settlement is more connected. 

A4.1. Asset Wealth Index interpretation 
The AWI is an economic construct that estimates the accumulated wealth and well-being of a household, derived from an inventory of the valuable 
items purchased and collected over time, for example appliances, livestock, property and vehicles. The AWI is a valuable metric when income 
statistics, tax records or other evidence of monetary wealth are not available. 

Although the AWI can be calculated household by household, a more robust statistical estimate is obtained by cluster households within a 
community or across small proximate communities. The interpretation of AWI is therefore the average indexed wealth per household in a 
community of interest. Furthermore, by comparing the non-dimensional index across space and time (spatial time series), we can draw insights 
about the changes in well-being within and across communities on average at household level. 

The AWI has a 2 km x 2 km resolution. This resolution refers to the level of detail and granularity present in each pixel (or polygon) of the raster 
image. Resolution is typically measured in terms of the size of the smallest discernible unit on the ground, often represented in metres, feet, or 
other units of distance. Therefore, a 2 km x 2 km pixel (or polygon) has one value for that entire area. We combined this raster with our settlement 
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areas and calculated the average household AWI for each settlement area. Because we have an average of household-level AWI for each 
settlement, it would not be possible to pull out an individual household AWI; using this dataset, it is only possible to perform a community-level 
impact assessment. 
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A4.2. Asset Wealth Index production 
The Asset Wealth layer is produced from a deep learning model that predicts survey-based estimates from satellite imagery. To facilitate 
comparison within and across countries, we transformed asset wealth into a normalised index. To generate this data, we collate locally 
representative survey data on household asset ownership to create an AWI, which is the first principal component of a principal component 
analysis (PCA) computed on those assets over those households. We then train a random forest model to predict village-aggregated values with 
satellite imagery, validating on data the model was not trained on. 

 
Figure source: https://docs.atlasai.co/economic%20well-being/asset_wealth/  
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Annex 5: Summary of comparisons to other approaches 
Note: we include randomised control trials (RCTs) here for reference purposes as the ‘gold standard’. It is rarely feasible to apply RCTs to 
investment projects, given the requirement to randomise treatment. 

Approach Cost Time required Data requirements Engagement by 
investment owners 

Flexibility Evidence standard 

RCT High High High High Low Gold standard (but 
rarely feasible) 

Costs will vary by 
scope. 

Requires before and 
after data collection on 
the ground, with 
sufficient time intervals 
for impact to emerge. 

Primary data typically 
required at household 
level before and after. 

Requires adaptation 
of implementation 
models to enable 
randomised 
treatment. 

Typically, not 
possible to adapt or 
scale up after 
baseline data 
collected. 

Requires randomised 
assignment of treatment 
and control units. 

Quasi-experimental 
designs (e.g. 
difference-in-
difference) 

Medium  
 

High High Medium Medium Very strong (but limited 
flexibility) 

Costs will vary by 
scope. 

Requires before and 
after data collection on 
the ground, with 
sufficient time intervals 
for impact to emerge. 

Primary data typically 
required at household 
level before and after. 

Requires support to 
identify and access 
treated and 
untreated locations 
on the ground. 

Allows for some 
flexibility in 
application post-
baseline. 

Flexibility is limited 
once baseline data is 
collected; there is risk 
of contamination of 
control units over time. 
Difficult to apply to 
investments with rapidly 
expanding customer 
base. Can be difficult to 
identify plausible 
counterfactual on the 
ground. 

Geospatial analysis 
with synthetic 
controls 

Low Low Low Low High Strong (and flexible) 

Marginal cost will fall 
in subsequent 
applications and as 
approach matures. 

Can be done quickly and 
retrospectively. 

Requires access to 
secondary geospatial 
datasets and 
geotagged data on 
clients, but no other 
primary data. 

Limited engagement 
needed beyond 
providing geotagged 
data on clients. 

Can be scaled and 
repeated quickly; 
does not require a 
baseline. 

Flexible – can offer a 
robust counterfactual 
even where difficult to 
identify physical control 
groups. 
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